[1]
G.D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, in Nanostructured Materials in Electrochemistry (ed A. Eftekhari), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2008) 1-117.
DOI: 10.1002/9783527621507.ch1
Google Scholar
[2]
K. Khowamnuaychok, C. Luangchaisri, I. Chatnuntawech, and C. Muangphat, Studies on the Uniformity and Hexagonality of Anodic Aluminum Oxide by Image Analysis Methods, EGM (2017).
DOI: 10.1063/1.5002477
Google Scholar
[3]
L. Zaraska, G. D. Sulka, M. Jaskula, Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays, Surface & Coatings Technology 205 (2010) 2432-2437.
DOI: 10.1016/j.surfcoat.2010.09.038
Google Scholar
[4]
Z. Cui, Nanofabrication Principles, Capabilites and Limits Second Edition, Springer International Publishing Switzerland (2017) 391-396.
Google Scholar
[5]
M. Norek, M. Dopierala, W. J. Stepniowski, Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina, Journal of Electroanalytical Chemistry 750 (2015).
DOI: 10.1016/j.jelechem.2015.05.024
Google Scholar
[6]
R. Elaish, M. Curioni, K. Gowers, A. Kasuga, H. Habazaki, T. Hashimoto, and P. Skeldona, Influence of Fluorozirconic Acid on Sulfuric Acid Anodizing of Aluminum, Journal of The Electrochemical Society, 164 (13) (2017) 831-839.
DOI: 10.1149/2.1561713jes
Google Scholar
[7]
W.J. Stepniowski, M. Moneta, M. Norek, M. Michalska-Domanska, A. Scarpellini, M. Salerno, The influence of electrolyte composition on the growth of nanoporous anodic alumina, Electrochimica Acta 211 (2016) 453-460.
DOI: 10.1016/j.electacta.2016.06.076
Google Scholar
[8]
W.J. Stępniowski, D. Zasada, Z. Bojar, First step of anodization influences the final nanopore arrangement in anodized alumina, Surface & Coatings Technology 206 (2011) 1416-1422.
DOI: 10.1016/j.surfcoat.2011.09.004
Google Scholar
[9]
K. B. Kim, B. C. Kim, S. J. Ha and M. W. Cho, Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy, Journal of Mechanical Science and Technology 31 (9) (2017) 4387-4393.
DOI: 10.1007/s12206-017-0838-1
Google Scholar
[10]
M. Michalska-Domanska, M. Norek, W. J. Stepniowski, and B. Budnerb, Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum – A comparative study with the AAO produced on high purity aluminum, Electrochimica Acta 105 (2013).
DOI: 10.1016/j.electacta.2013.04.160
Google Scholar
[11]
R. Kondo, D. Nakajima, T. Kikuchi, S. Natsui, R. O. Suzuki, Superhydrophilic and superhydrophobic aluminum alloys fabricated via pyrophosphoric acid anodizing and fluorinated SAM modification, Journal of Alloys and Compounds 725 (2017) 379-387.
DOI: 10.1016/j.jallcom.2017.07.183
Google Scholar
[12]
W. J. Stępniowskia, A. Nowak-Stępniowska, A. Presz, T. Czujko, R. A. Varin, The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores, Materials Characterization 91 (2014) 1-9.
DOI: 10.1016/j.matchar.2014.01.030
Google Scholar
[13]
K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, G. D. Sulka, Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties, Electrochimica Acta 180 (2015) 801-810.
DOI: 10.1016/j.electacta.2015.09.011
Google Scholar
[14]
L. Zaraska,·W. J. Stepniowski, G. D. Sulka, E. Ciepiela, M. Jaskula, Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software, Appl Phys A 114 (2014).
DOI: 10.1007/s00339-013-7618-2
Google Scholar
[15]
J. M. Torrescano-Alvarez, M. Curioni, and P. Skeldonz, Gravimetric Measurement of Oxygen Evolution during Anodizing of Aluminum Alloys, Journal of The Electrochemical Society, 164 (13) (2017) 728-734.
DOI: 10.1149/2.0371713jes
Google Scholar
[16]
C. Lämmel, M. Schneider, C. Heubner, W. Beckert, A. Michaelis, Investigations of burning phenomena during the hard anodising of aluminium by local in-operando temperature measurements, Electrochimica Acta 249 (2017) 271-277.
DOI: 10.1016/j.electacta.2017.07.167
Google Scholar
[17]
W. J. Stepniowski, W. Florkiewicz, M. Michalska-Domanska, M. Norek, T. Czujko, A comparative study of electrochemical barrier layer thinning for anodic aluminum oxide grown on technical purity aluminum, Journal of Electroanalytical Chemistry 741 (2015).
DOI: 10.1016/j.jelechem.2015.01.025
Google Scholar
[18]
R. Kondo, T. Kikuchi, S. Natsui, R. O.Suzuki, Fabrication of self-ordered porous alumina via anodizing in sulfate solutions, Materials Letters 183 (2016) 285-289.
DOI: 10.1016/j.matlet.2016.07.109
Google Scholar
[19]
M. Norek, M. Dopierala, Z. Bojar, The influence of pre-anodization voltage on pore arrangement in anodic alumina produced by hard anodization, Materials Letters 183 (2016) 5-8.
DOI: 10.1016/j.matlet.2016.07.038
Google Scholar
[20]
L. Zaraska, G. D. Sulka, J. Szeremeta, M. Jaskula, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochimica Acta 55 (2010) 4377-4386.
DOI: 10.1016/j.electacta.2009.12.054
Google Scholar