Defects of Porous Self-Structured Anodic Alumina Oxide on Industrial Aluminum Grades

Article Preview

Abstract:

In this paper, an experimental examination of defects in anodization of aluminum of the industrial grade A7E is presented. A two-step method of anodizing was used in an electrolyte containing 20% wt. % sulfuric acid at 0 ° C at constant voltage. Micro-video recording was carried out in both anodizing stages to examine anodizing process on a micrometer scale, and to determine the corresponding macro-scale effects indicating incorrect anodization process. Macro-scale effects in the form of gas evolution were detected. Subsequently confirmed on the surface of the coating from which it occurred, using scanning electron microscopy. Methods for preparing samples subject to anodization are proposed to reduce the number of defects. The results should lead to industrial implementation of inexpensive and high-quality nanoporous anode materials with a variety of applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

1134-1139

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, in Nanostructured Materials in Electrochemistry (ed A. Eftekhari), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2008) 1-117.

DOI: 10.1002/9783527621507.ch1

Google Scholar

[2] K. Khowamnuaychok, C. Luangchaisri, I. Chatnuntawech, and C. Muangphat, Studies on the Uniformity and Hexagonality of Anodic Aluminum Oxide by Image Analysis Methods, EGM (2017).

DOI: 10.1063/1.5002477

Google Scholar

[3] L. Zaraska, G. D. Sulka, M. Jaskula, Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays, Surface & Coatings Technology 205 (2010) 2432-2437.

DOI: 10.1016/j.surfcoat.2010.09.038

Google Scholar

[4] Z. Cui, Nanofabrication Principles, Capabilites and Limits Second Edition, Springer International Publishing Switzerland (2017) 391-396.

Google Scholar

[5] M. Norek, M. Dopierala, W. J. Stepniowski, Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina, Journal of Electroanalytical Chemistry 750 (2015).

DOI: 10.1016/j.jelechem.2015.05.024

Google Scholar

[6] R. Elaish, M. Curioni, K. Gowers, A. Kasuga, H. Habazaki, T. Hashimoto, and P. Skeldona, Influence of Fluorozirconic Acid on Sulfuric Acid Anodizing of Aluminum, Journal of The Electrochemical Society, 164 (13) (2017) 831-839.

DOI: 10.1149/2.1561713jes

Google Scholar

[7] W.J. Stepniowski, M. Moneta, M. Norek, M. Michalska-Domanska, A. Scarpellini, M. Salerno, The influence of electrolyte composition on the growth of nanoporous anodic alumina, Electrochimica Acta 211 (2016) 453-460.

DOI: 10.1016/j.electacta.2016.06.076

Google Scholar

[8] W.J. Stępniowski, D. Zasada, Z. Bojar, First step of anodization influences the final nanopore arrangement in anodized alumina, Surface & Coatings Technology 206 (2011) 1416-1422.

DOI: 10.1016/j.surfcoat.2011.09.004

Google Scholar

[9] K. B. Kim, B. C. Kim, S. J. Ha and M. W. Cho, Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy, Journal of Mechanical Science and Technology 31 (9) (2017) 4387-4393.

DOI: 10.1007/s12206-017-0838-1

Google Scholar

[10] M. Michalska-Domanska, M. Norek, W. J. Stepniowski, and B. Budnerb, Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum – A comparative study with the AAO produced on high purity aluminum, Electrochimica Acta 105 (2013).

DOI: 10.1016/j.electacta.2013.04.160

Google Scholar

[11] R. Kondo, D. Nakajima, T. Kikuchi, S. Natsui, R. O. Suzuki, Superhydrophilic and superhydrophobic aluminum alloys fabricated via pyrophosphoric acid anodizing and fluorinated SAM modification, Journal of Alloys and Compounds 725 (2017) 379-387.

DOI: 10.1016/j.jallcom.2017.07.183

Google Scholar

[12] W. J. Stępniowskia, A. Nowak-Stępniowska, A. Presz, T. Czujko, R. A. Varin, The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores, Materials Characterization 91 (2014) 1-9.

DOI: 10.1016/j.matchar.2014.01.030

Google Scholar

[13] K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, G. D. Sulka, Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties, Electrochimica Acta 180 (2015) 801-810.

DOI: 10.1016/j.electacta.2015.09.011

Google Scholar

[14] L. Zaraska,·W. J. Stepniowski, G. D. Sulka, E. Ciepiela, M. Jaskula, Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software, Appl Phys A 114 (2014).

DOI: 10.1007/s00339-013-7618-2

Google Scholar

[15] J. M. Torrescano-Alvarez, M. Curioni, and P. Skeldonz, Gravimetric Measurement of Oxygen Evolution during Anodizing of Aluminum Alloys, Journal of The Electrochemical Society, 164 (13) (2017) 728-734.

DOI: 10.1149/2.0371713jes

Google Scholar

[16] C. Lämmel, M. Schneider, C. Heubner, W. Beckert, A. Michaelis, Investigations of burning phenomena during the hard anodising of aluminium by local in-operando temperature measurements, Electrochimica Acta 249 (2017) 271-277.

DOI: 10.1016/j.electacta.2017.07.167

Google Scholar

[17] W. J. Stepniowski, W. Florkiewicz, M. Michalska-Domanska, M. Norek, T. Czujko, A comparative study of electrochemical barrier layer thinning for anodic aluminum oxide grown on technical purity aluminum, Journal of Electroanalytical Chemistry 741 (2015).

DOI: 10.1016/j.jelechem.2015.01.025

Google Scholar

[18] R. Kondo, T. Kikuchi, S. Natsui, R. O.Suzuki, Fabrication of self-ordered porous alumina via anodizing in sulfate solutions, Materials Letters 183 (2016) 285-289.

DOI: 10.1016/j.matlet.2016.07.109

Google Scholar

[19] M. Norek, M. Dopierala, Z. Bojar, The influence of pre-anodization voltage on pore arrangement in anodic alumina produced by hard anodization, Materials Letters 183 (2016) 5-8.

DOI: 10.1016/j.matlet.2016.07.038

Google Scholar

[20] L. Zaraska, G. D. Sulka, J. Szeremeta, M. Jaskula, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochimica Acta 55 (2010) 4377-4386.

DOI: 10.1016/j.electacta.2009.12.054

Google Scholar