Tin Powders Electrodeposition from Choline Chloride Based Ionic Liquid

Article Preview

Abstract:

Possibilities of tin powders obtainment from the choline chloride-ethylene glycol ionic liquid are considered. The tin reduction from an ionic liquid mechanism is confirmed via chronovoltametry, chronopotentiometry, transient potential and impedance spectroscopy methods. Said mechanism includes the trichlorostanite complexes reduction at current densities up to 5 mA / cm2, recovery from a polyanionic adsorbed layer at current densities of 5-12 mA/cm2 and recovery from a mixed layer including polyanions bound and by electrolyte ions at current densities exceeding 12 mA/cm2. Tin ions reduction from the mixed coating layer facilitates forming of encapsulated tin powder particles with shape of symmetrical dendrites. Powders obtainment from an ionic liquid allows to reduce the resulting powder dispersion.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

1252-1256

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.-H. Xu, C.L. Hussey, Journal of the Electrochemical Society. 140(3) (1993) 618-626.

Google Scholar

[2] N. Tachikawa, N. Serizawa, Y. Katayama ,T. Muira, Electrochimica Acta. 53(2008) 6530-6534.

Google Scholar

[3] T.-I. Leong, Y.-T. Hsieh, I.-W. Sun, Electrochimica Acta, 56(2011), 3941-3946.

Google Scholar

[4] M.-J. Deng, J.-K.Chang, T.-I. Leong, S.-W. Fang, P.-Y. Chen, I.-W. Sun, Electrochemistry. 77(8) (2009) 588-590.

Google Scholar

[5] M.-J. Deng, T.-I. Leong, I.-W. Sun, P.-Y. Chen, J.-K. Chang, W.-T. Tsai, Electrochemical and Solid-State Letters, 11(11) (2008) D85-D88.

Google Scholar

[6] W. Yang, H. Cang, Y. Tang, J. Wang, Y. Shi, Journal of Applied Electrochemistry. 3(2008)8 537-542.

Google Scholar

[7] M. Morimitsu, Y. Nakahara, Y. Iwaki, M. Matsunaga, Journal of Mining and Metallurgy, 39(1-2)B(2003) 59-67.

Google Scholar

[8] B.C.M. Martindale, S.E.W. Jone, R.G. Compton, Physical Chemistry Chemical Physics, 12 (2010) 1827-1833.

Google Scholar

[9] J.-F. Huang, I.-W. Sun, Journal of The Electrochemical Society. 150(6) (2003) E299-E306.

Google Scholar

[10] A.P. Abbott, G. Capper, K.J. McKenzie, K.S. Ryder, Journal of Electroanalytical Chemistry, 599 (2007) 288-294.

Google Scholar

[11] A. Cojocaru, Ş. Costovici, L. Anicăi, T. Vişan, Metalurgia International. 14 (11) (2009) 38-46.

Google Scholar

[12] A.P. Abbott, G. Capper, D.L. Davies, R. Rasheed, Chem. Eur. J. 10(2004) 3769.

Google Scholar

[13] J.-F. Huang, I.-W. Sun, Journal of The Electrochemical Society. 150(6) (2003) E299-E306.

Google Scholar

[14] M.-J. Deng, T.-I. Leong, I.-W. Sun, P.-Y. Chen, J.-K. Chang and W.-T. Tsai, Electrochemical and Solid-State Letters. 11(11) (2008) D85-D88.

Google Scholar

[15] V.M. Lipkin, M.S. Lipkin, V.I. Lachin, Materials Science Forum. 870 (2016), 636-641.

Google Scholar

[16] V.M. Lipkin, M.S. Lipkin, Y.M. Berejnoy, Materials Science Forum. 843(2016), 22-27.

Google Scholar

[17] V.M. Lipkin, M.S. Lipkin, A.A. Naumenko, A.S. Misharev, F.R. Tulaeva, E.A. Rybalko, N.A. Lytkin, V.G. Shishka, A.N. Bogdanchenko, ECS Meeting Abstracts, Cancun, Mexico, (2014).

DOI: 10.1149/ma2014-02/38/1891

Google Scholar

[18] V.M. Lipkin, M.S. Lipkin, A.A. Kuzarov, H. Nguen, F.R. Tulaeva, E.A. Rybalko, N.A. Lytkin, V.G. Shishka, A.I. Gaydar, Journal of Friction and Wear. 36(4) (2015) 306-313.

DOI: 10.3103/s1068366615040078

Google Scholar

[19] A.Trifonova, M. Winter, J.O. Besenhard, Journal of Power Sources.  174(2) (2007) 800-804.

Google Scholar

[20] Y.Y. Gerasimenko, S.V. Kucherenko, S.M. Lipkin, M.S. Lipkin, ECS Transactions. 58(14) (2013) 89-94.

DOI: 10.1149/05814.0089ecst

Google Scholar