Numerical Solution of the Differential Diffusion Equation for a Steel Carburizing Process

Article Preview

Abstract:

The simplified algorithm of the numerical solution of the differential diffusion equation is presented. The solution is based on the one-dimensional diffusion model with the third kind boundary conditions and the finite difference method. The proposed approach allows for the quick and precise assessment of the carburizing process parameters – temperature and time.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

1230-1234

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.-H. Yang, M.-Q. Wang, J.-C. Chen, H. Dong, Microstructure and Mechanical Properties of Gear Steels After High Temperature Carburization, J. Iron Steel Res. Int., 20 (2013) 140-145.

DOI: 10.1016/s1006-706x(13)60227-7

Google Scholar

[2] S.N. Lingamanaik, B.K. Chen, The effects of carburising and quenching process on the formation of residual stresses in automotive gears, Comp. Mat. Sci., 62 (2012) 99-104.

DOI: 10.1016/j.commatsci.2012.05.033

Google Scholar

[3] Z. Pang, S. Yu, J. Xu, Study of effect of quenching deformation influenced by 17CrNiMo6 gear shaft of carburization, Phys. Proc., 50 (2013) 103-112.

DOI: 10.1016/j.phpro.2013.11.018

Google Scholar

[4] A.A. Walvekar, F. Sadeghi, Rolling contact fatigue of case carburized steels, Int. J. Fatig., 95 (2017) 264-281.

DOI: 10.1016/j.ijfatigue.2016.11.003

Google Scholar

[5] T.M. Loganathan, J. Purbolaksono, J.I. Inayat-Hussain, N. Wahab, Effects of carburization on expected fatigue life of alloys steel shafts, Mater. Design, 32 (2011) 3544-3547.

DOI: 10.1016/j.matdes.2011.02.004

Google Scholar

[6] N.R. Paulson, Z. Golmohammadi, A.A. Walvekar, F. Sadeghi, K. Mistry, Rolling contact fatigue in refurbished case carburized bearings, Tribol. Int., 115 (2017) 348-364.

DOI: 10.1016/j.triboint.2017.05.026

Google Scholar

[7] B. Jo, S. Sharifimehr, Y. Shim, A. Fatemi, Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states, Int. J. Fatig., 100 (2017) 454-465.

DOI: 10.1016/j.ijfatigue.2016.12.023

Google Scholar

[8] E. Conrado, C. Gorla, P. Davoli, M. Boniardi, A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications, Eng. Fail. Anal., 78 (2017) 41-54.

DOI: 10.1016/j.engfailanal.2017.03.006

Google Scholar

[9] Ph. Jacquet, D.R. Rousse, G. Bernard, M. Lambertin, A novel technique to monitor carburizing processes, Mater. Chem. Phys., 77 (2002) 542-551.

DOI: 10.1016/s0254-0584(02)00106-2

Google Scholar

[10] S.-J. Lee, D.K. Matlock, C.J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects, ISIJ Int., 51 (2011) 1903-(1911).

DOI: 10.2355/isijinternational.51.1903

Google Scholar

[11] P. Cavaliere, G. Zavarise, M. Perillo, Modeling of the carburizing and nitriding processes, Comp. Mater. Sci., 46 (2009) 26-35.

DOI: 10.1016/j.commatsci.2009.01.024

Google Scholar

[12] S.-J. Lee, D.K. Matlock, C.J. Van Tyne, Comparison of two finite element simulation codes used to model the carburizing of steel, Comp. Mater. Sci., 68 (2013) 47-54.

DOI: 10.1016/j.commatsci.2012.10.007

Google Scholar

[13] D.-W. Kim, H.-H. Cho, W.-B. Lee, K.T. Cho, Y.-G. Cho, S.-J. Kim, H.N. Han, A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity, Mater. Design, 99 (2016) 243-253.

DOI: 10.1016/j.matdes.2016.03.047

Google Scholar

[14] D.S. Rong, J.M. Gong, Y. Jiang, Thermodynamic Simulation of Low Temperature Colossal Carburization of Austenitic Stainless Steel, Proc. Eng., 130 (2015) 676-684.

DOI: 10.1016/j.proeng.2015.12.296

Google Scholar

[15] A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S.-Y. Kim, S. Kubota, Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear, J. Mater. Process. Technol., 209 (2009) 3597-3609.

DOI: 10.1016/j.jmatprotec.2008.08.017

Google Scholar

[16] ASTM E140, Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, PA, (2012).

DOI: 10.1520/e0140-12br19e01

Google Scholar

[17] G.E. Totten, M.A.H. Howes (Eds.), Steel Heat Treatment Handbook, CRC Press, USA, (1997).

Google Scholar

[18] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag New York, USA, (1995).

Google Scholar

[19] W. Gao, L. Kong, J.M. Long, P.D. Hodgson, Measurement of the mass transfer coefficient at workpiece surfaces in heat treatment furnaces, J. Mater. Process. Technol., 209 (2009) 497-505.

DOI: 10.1016/j.jmatprotec.2008.02.028

Google Scholar

[20] T. Holm, P. Olsson, E. Troell, Steel and its Heat Treatment: A Handbook, Swerea IVF, Stockholm, (2012).

Google Scholar