[1]
Y.-H. Yang, M.-Q. Wang, J.-C. Chen, H. Dong, Microstructure and Mechanical Properties of Gear Steels After High Temperature Carburization, J. Iron Steel Res. Int., 20 (2013) 140-145.
DOI: 10.1016/s1006-706x(13)60227-7
Google Scholar
[2]
S.N. Lingamanaik, B.K. Chen, The effects of carburising and quenching process on the formation of residual stresses in automotive gears, Comp. Mat. Sci., 62 (2012) 99-104.
DOI: 10.1016/j.commatsci.2012.05.033
Google Scholar
[3]
Z. Pang, S. Yu, J. Xu, Study of effect of quenching deformation influenced by 17CrNiMo6 gear shaft of carburization, Phys. Proc., 50 (2013) 103-112.
DOI: 10.1016/j.phpro.2013.11.018
Google Scholar
[4]
A.A. Walvekar, F. Sadeghi, Rolling contact fatigue of case carburized steels, Int. J. Fatig., 95 (2017) 264-281.
DOI: 10.1016/j.ijfatigue.2016.11.003
Google Scholar
[5]
T.M. Loganathan, J. Purbolaksono, J.I. Inayat-Hussain, N. Wahab, Effects of carburization on expected fatigue life of alloys steel shafts, Mater. Design, 32 (2011) 3544-3547.
DOI: 10.1016/j.matdes.2011.02.004
Google Scholar
[6]
N.R. Paulson, Z. Golmohammadi, A.A. Walvekar, F. Sadeghi, K. Mistry, Rolling contact fatigue in refurbished case carburized bearings, Tribol. Int., 115 (2017) 348-364.
DOI: 10.1016/j.triboint.2017.05.026
Google Scholar
[7]
B. Jo, S. Sharifimehr, Y. Shim, A. Fatemi, Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states, Int. J. Fatig., 100 (2017) 454-465.
DOI: 10.1016/j.ijfatigue.2016.12.023
Google Scholar
[8]
E. Conrado, C. Gorla, P. Davoli, M. Boniardi, A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications, Eng. Fail. Anal., 78 (2017) 41-54.
DOI: 10.1016/j.engfailanal.2017.03.006
Google Scholar
[9]
Ph. Jacquet, D.R. Rousse, G. Bernard, M. Lambertin, A novel technique to monitor carburizing processes, Mater. Chem. Phys., 77 (2002) 542-551.
DOI: 10.1016/s0254-0584(02)00106-2
Google Scholar
[10]
S.-J. Lee, D.K. Matlock, C.J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects, ISIJ Int., 51 (2011) 1903-(1911).
DOI: 10.2355/isijinternational.51.1903
Google Scholar
[11]
P. Cavaliere, G. Zavarise, M. Perillo, Modeling of the carburizing and nitriding processes, Comp. Mater. Sci., 46 (2009) 26-35.
DOI: 10.1016/j.commatsci.2009.01.024
Google Scholar
[12]
S.-J. Lee, D.K. Matlock, C.J. Van Tyne, Comparison of two finite element simulation codes used to model the carburizing of steel, Comp. Mater. Sci., 68 (2013) 47-54.
DOI: 10.1016/j.commatsci.2012.10.007
Google Scholar
[13]
D.-W. Kim, H.-H. Cho, W.-B. Lee, K.T. Cho, Y.-G. Cho, S.-J. Kim, H.N. Han, A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity, Mater. Design, 99 (2016) 243-253.
DOI: 10.1016/j.matdes.2016.03.047
Google Scholar
[14]
D.S. Rong, J.M. Gong, Y. Jiang, Thermodynamic Simulation of Low Temperature Colossal Carburization of Austenitic Stainless Steel, Proc. Eng., 130 (2015) 676-684.
DOI: 10.1016/j.proeng.2015.12.296
Google Scholar
[15]
A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S.-Y. Kim, S. Kubota, Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear, J. Mater. Process. Technol., 209 (2009) 3597-3609.
DOI: 10.1016/j.jmatprotec.2008.08.017
Google Scholar
[16]
ASTM E140, Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, PA, (2012).
DOI: 10.1520/e0140-12br19e01
Google Scholar
[17]
G.E. Totten, M.A.H. Howes (Eds.), Steel Heat Treatment Handbook, CRC Press, USA, (1997).
Google Scholar
[18]
J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag New York, USA, (1995).
Google Scholar
[19]
W. Gao, L. Kong, J.M. Long, P.D. Hodgson, Measurement of the mass transfer coefficient at workpiece surfaces in heat treatment furnaces, J. Mater. Process. Technol., 209 (2009) 497-505.
DOI: 10.1016/j.jmatprotec.2008.02.028
Google Scholar
[20]
T. Holm, P. Olsson, E. Troell, Steel and its Heat Treatment: A Handbook, Swerea IVF, Stockholm, (2012).
Google Scholar