Investigation of Protective Coatings for Carbon Fibers by the Sol-Gel Method

Article Preview

Abstract:

The article shows the possibility of applying a silicon dioxide coating on the carbon fiber by the sol-gel method. The evaluation of the protective properties of the obtained coatings at a temperature of 600 ° C is given; the changing of the a coated fiber surface morphology during the destruction process is shown for the first time. The destruction of the carbon fiber surface without coating begins at a soaking time of 120 min, which is accompanied by a significant decrease in the diameter of the fiber. The destruction of the coated carbon fiber surface begins at a soaking time of 360 minutes, the fiber diameter changes insignificantly. The paper shows that the sol-gel coatings slow down the oxidation of the carbon fiber more than 2 times.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

1242-1247

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Lutz, I.A. Galochkina, Aluminum composite alloys - alloys of the future, Samara, Russia, (2013).

Google Scholar

[2] Jingjing Wang, Wensong Lin, Xuezeng Yan, Xiao Wu, Fen Wu, Yayun Yang, Preparation and microstructure of Al2O3–SiO2–TiO2 coating on three-dimensional braided carbon fiber by sol–gel technology, Surface & Coatings Technology 298 (2016) 58-63.

DOI: 10.1016/j.matdes.2015.10.079

Google Scholar

[3] T.A. Chernyshova, L.I. Kobeleva, P. Shebo, A.V. Panfilov, Interaction of metakkic melts witj reinforcing fillers, Moscow, Russia, (1993).

Google Scholar

[4] Moonhee Lee, Yongbum Choi, Kenjiro Sugio, Kazuhiro Matsugi, Gen Sasaki, Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process, Composites Science and Technology 97 (2014).

DOI: 10.1016/j.compscitech.2014.03.022

Google Scholar

[5] R. Gadiou, S. Serverin, P Gibot, C. Vix-Guterl, The synthesis of SiC and TiC protective coatings for carbon fibers by the reactive replica process, Journal of the European Ceramic Society 28 (2008) 2265–2274.

DOI: 10.1016/j.jeurceramsoc.2008.02.022

Google Scholar

[6] A. Olszowka-Myalska1, A. Botor-Probierz, Studies of the AZ91 magnesium alloy/SiO2-coated carbon fibres composite microstructure, IOP Conf. Series: Materials Science and Engineering 7 (2010) 1-9.

DOI: 10.1088/1757-899x/7/1/012022

Google Scholar

[7] S. Labruquere, H. Blanchard, R. Pailler, R. Naslain, Enhancement of the oxidation resistance of Interfacial Area in C/C composites, Journal of the European Ceramic Society 22 (2002) 1001-1009.

DOI: 10.1016/s0955-2219(01)00410-1

Google Scholar

[8] Tao Ma, Lina Qi, Ning Wang, Ru Jia, Development and Application of Sheet-like Flexible Carbon Fiber Heat-generating Element, MEIC (2014) 663-666.

Google Scholar

[9] T. Piquero, H. Vincent, C. Vincent, J. Bouix, Influence of carbide coatings on the oxidation behavior of carbon fibers, Carbon 33 (1995) 455-467.

DOI: 10.1016/0008-6223(94)00170-5

Google Scholar

[10] J.R. Creighton, P. Ho Sandia, Chapter 1. Introduction to Chemical Vapor Deposition (CVD), ASM International, Ohio, USA, (2001).

Google Scholar

[11] Q. Zeng, Fabrication of Al2O3-coated carbon fiber-reinforced Al-matrix composites, Journal of Applied Polymer Science 70 (1998) 177-183.

DOI: 10.1002/(sici)1097-4628(19981003)70:1<177::aid-app17>3.0.co;2-4

Google Scholar

[12] Bo-Hye Kim, Kap Seung Yang, Hee-Gweon Woo, Su Yeun Kim, Improvement of Anti-Oxidation Properties of Carbon Fibers by SiC/SiO2 Ceramic Coating, J. of Nanoscience and Nanotechnology 11 (2011) 7119-7123.

DOI: 10.1166/jnn.2011.4795

Google Scholar

[13] C.J. Brinker, Sol-gel science: the physics and chemistry of sol-gel processing, London, UK, (1990).

Google Scholar

[14] C. Vix-Guterl, P. Ehrburger, effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation, Carbon 35 (1997) 1587-1592.

DOI: 10.1016/s0008-6223(97)00117-6

Google Scholar

[15] P.Y. Chu, D.E. Clark, Infrared spectroscopy of silica sols--effects of water concentration, catalyst, and aging, Spectroscopy letters 25 (1992) 201-220.

DOI: 10.1080/00387019208020687

Google Scholar

[16] C. Vix-Guterl, I. Alix, P. Ehrburger, Synthesis of tubular silicon carbide (SiC) from a carbon–silica material by using a reactive replica technique:mechanism of formation of SiC, Acta Materialia 52 (2004) 1639-1651.

DOI: 10.1016/j.actamat.2003.12.033

Google Scholar

[17] C.W. Heo, S.J. Cha, D.J. Lee, H.M. Lim, D.H. Suh, K.Y. Cho, C.M. Yang, Preparation and thermal properties of SiC/CF nanocomposites, 18th International Conference On Composite Materials (2011).

Google Scholar

[18] K. Krnel, Z. Stadler, T. Kosmac, Microstructure and mechanical properties of carbon/carbon-silicon carbide composites prepared by sol-gel processing, Materials and technology 46 (2012) 435-438.

Google Scholar

[19] P. Gibot, C. Vix-Guterl, TiO2 and [TiO2/β-SiC] microtubes prepared from an original process, Journal of the European Ceramic Society 27 (2007) 2195-2201.

DOI: 10.1016/j.jeurceramsoc.2006.08.006

Google Scholar

[20] Kedong Xia, Chunxiang Lu, Yu Yang, Preparation of anti-oxidative SiC/SiO2 coating on carbon fibers from vinyltriethoxysilane by sol–gel method, Applied Surface Science 265 (2013) 603-609.

DOI: 10.1016/j.apsusc.2012.11.056

Google Scholar