Determination of Beta-Transus Temperature of Two-Phase Titanium Alloys Using Differential Scanning Calorimetry

Article Preview

Abstract:

The new technique has been developed for measuring the β-transus temperature of (α+β)-titanium alloys with any initial microstructure by means of the DSC method. The technique is based on a linear correlation between extremums of temperature on the DSC time-derivative curve, the Mo-equivalent of an alloy and the equilibrium β-transus temperature. The developed technique enables the determination of the β-transus temperature with the use of a single specimen and it is characterized by high accuracy comparable with that of structural analysis techniques.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

259-264

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] EN 3684:2007, Aerospace series, Test methods, Titanium alloy wrought products, Determination of beta transus temperature, Metallographic method, ASD/MAT, Published standards, (2007).

DOI: 10.3403/30155900

Google Scholar

[2] V.K. Alexandrov, Polufabrikati titanivich splavov, Metallurgia, Moscow. (1979).

Google Scholar

[3] A.G. Illarionov, Y.I. Kosmatskii, E.A. Filyaeva, F.V. Vodolazskii, N.A. Barannikova, Experimental Determination of Temperature Parameters for Evaluating the Possibility of Manufacturing Alloy Ti–3Al–2.5V Hot-Extruded, Metallurgist. 60 (2017).

DOI: 10.1007/s11015-017-0396-x

Google Scholar

[4] V.D. Sadovsky,. G.A. Bogacheva, L.V. Smirnov, Issledovanie phasovoy perekristallizatsii titana, Physica metallov I metallovedenie, 10 (1960) 397-403.

Google Scholar

[5] B.A. Kolachev, S.G. Glazunov, Titanovye splavy: Metallovedenie titana i ego splavov, Metallurgia, Moscow, (1992).

Google Scholar

[6] M.E. Brown, Handbook of Thermal Analysis and Calorimetry: Principles and Practice, Elsevier, V. 1, (1998).

Google Scholar

[7] M.E. Brown, Handbook of Thermal Analysis and Calorimetry: Applications to Inorganic and Miscellaneous Materials, Elsevier, V. 2, (2003).

Google Scholar

[8] G. Lütjering, J.C. Williams, Titanium, Springer, Berlin, (2003).

Google Scholar

[9] W.W. Wendlandt, Thermal Methods of Analysis, John Wiley & Sons Inc; Second Edition, (1974).

Google Scholar

[10] P. Fima, A. Gazda, Thermal analysis of selected Sn-Ag-Cu alloys, J Therm Anal Calorim. 112 (2013) 731-737.

DOI: 10.1007/s10973-012-2583-0

Google Scholar

[11] K.Yildiz, M. Kok, Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys, J Therm Anal Calorim. 115 (2014) 1509-1514.

DOI: 10.1007/s10973-013-3409-4

Google Scholar

[12] Y. T. Zhu, J. H. Devletian, Determination of Equilibrium Solid-Phase Transition Temperature using DTA, Metallurgical and Mat. Trans, A 22 (1991) 1993-(1998).

DOI: 10.1007/bf02669866

Google Scholar

[13] Y. T. Zhu, J. H. Devletian, A. Manthiram, Application of Differential Thermal Analysis to Solid-Solid Transitions in Phase Diagram Determination, J. Phase Equilibria, 15 (1994) 37-41.

DOI: 10.1007/bf02667680

Google Scholar

[14] M. Carton, P. Jacques, N. Clement, J. Lecomte-Beckers, Study of Transformations and Microstructural Modification in Ti-LCB and Ti-555 Alloys using Differential Scanning Calorimetry, Proc. of Ti-2007 Science and technology - 11th World Conference on Titanium. (2007).

Google Scholar

[15] A.G. Illarionov, A.A. Popov, M.A. Ryzhkov, D.V. Gadeev, Razrabotka metodik opredelenija temperatury polnogo polimorfnogo prevrashhenija dvuhfaznogo titanovogo splava metodom termicheskogo analiza, Titan, 1 (2010) 24-30.

Google Scholar

[16] M. Benke, F. Tranta, P. Barkóczy, V. Mertinger, L. Daróczi, Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation Mater. Sci. Eng. A 481-482 (2008) 522-525.

DOI: 10.1016/j.msea.2007.01.184

Google Scholar

[17] M. Benke, F. Tranta, P. Barkóczy, V. Mertinger, L. Daróczi, Supplement on Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation,, Mater. Sci. Eng., A 527 (2010) 2441-2443.

DOI: 10.1016/j.msea.2009.11.030

Google Scholar

[18] J.L. Pelegrina, V. Torra, Comment on Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation, by Benke et al. [Mater. Sci. Eng. A 481–482 (2008).

DOI: 10.1016/j.msea.2009.06.053

Google Scholar

[19] U. Zvikker, Titan i ego splavy, Mir, Moscow, (1979).

Google Scholar

[20] Z. Karagoz, C.A. Canbay, Relationship between transformation temperatures and alloying elements in Cu-Al-Ni shape memory alloysJ Therm Anal Calorim. 114 (2013) 1069-1074.

DOI: 10.1007/s10973-013-3145-9

Google Scholar