Crystallographic Peculiarities of Shear α-γ Transformation in Austenitic Stainless Steel in the High Temperature Area

Article Preview

Abstract:

Structure-texture states in 18Cr-9Ni austenitic stainless steel after long-term operation of the tube at high temperatures and neutron irradiation have been investigated with orientation microscopy (EBSD). In the examined samples, cut out at the external surface, a significant concentration of α-phase with the lattice close to bcc has been detected. Phase transformation shows prominent crystallographic direction, caused by initial orientation of austenite grains and tensile stress effect, normally directed at a tangent to its external surface. High-angle boundary spectrum with the most prominent coincidence site lattice (CSL) boundaries, Σ3, Σ11, Σ25b, Σ33с Σ41с, is typical for α-phase. Thus, it can be claimed that austenite transformation was carried out by shear (bainite, taking into account high temperature) mechanism, according to orientation relationships (OR), intermediate between Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W). Shear γ-α transformation began in austenite on twin boundaries (CSL Σ3), and was carried out in the range determined by initial orientation of γ-phase crystals and effective stress value. Based on high density of CSL boundaries Σ3 in α-phase it has been suggested that its nuclei are represented not by single crystallites, but crystallite couples in twin misorientation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

253-258

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Karlsen, S. Van Dyck, The effect of prior cold-work on the deformation behavior of neutron irradiated AISI 304 austenitic stainless steel, J. Nucl. Mater. 406 (2010) 127-137.

DOI: 10.1016/j.jnucmat.2010.01.028

Google Scholar

[2] W. Karlsen, G. Diego, B. Devrient, Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants, J. Nucl. Mater. 406 (2010) 138-151.

DOI: 10.1016/j.jnucmat.2010.01.029

Google Scholar

[3] L. C. M. Gilapa, C. A. Silva de Oliveira, M. Ribeiro da Silva, Effect of copper on the formation of strain-induced martensite in two austenitic stainless steels AISI 304, Mater. Sci. Eng. A. 622 (2015) 212-218.

DOI: 10.1016/j.msea.2014.10.059

Google Scholar

[4] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, Enhanced mechanical properties through reversion in metastable austenitic stainless steels, Metall. Mater. Trans. A. 40 (2009) 729-744.

DOI: 10.1007/s11661-008-9723-y

Google Scholar

[5] H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, EBSD study of a hot deformed austenitic stainless steel, Mater. Sci. Eng. A. 538 (2012) 236-245.

DOI: 10.1016/j.msea.2012.01.037

Google Scholar

[6] A. Järvenpää, M. Jaskari; J. Man, L.P. Karjalainen, Stability of grain-refined reversed structures in a 301LN austenitic stainless steel under cyclic loading, Mater. Sci. Eng. A, 703(2017) 280-292.

DOI: 10.1016/j.msea.2017.07.033

Google Scholar

[7] E.A. Ul'yanin, Korrozionnostoykie stali splavy, Metallurgiya, Moscow, (1991).

Google Scholar

[8] E. Nagy, V. Mertinger, F. Tranta, J. Sylyom, Deformation induced martensitic transformation in stainless steels, Mater. Sci. Eng. A. 378 (2004) 308-313.

DOI: 10.1016/j.msea.2003.11.074

Google Scholar

[9] A. Das, S. Sivaprasad, M. Ghosh, P. C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Mater. Sci. Eng. A. 486 (2008) 283-286.

DOI: 10.1016/j.msea.2007.09.005

Google Scholar

[10] M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt, W. Theisen, Influence of machining-induced martensite on hydrogen-assisted fracture of AISI type 304 austenitic stainless steel, Int. J. Hydrogen. Energ. 36 (2011) 195-206.

DOI: 10.1016/j.ijhydene.2011.05.133

Google Scholar

[11] A. Kurc-Lisiecka, W. Ozgowicz, W. Ratuszek, K. Chruściel, Texture and structure evolution during cold rolling of austenitic stainless steel, Journal of Achievements in Materials and Manufacturing Engineering. 52 (2012) 22-30.

Google Scholar

[12] I.Yu. Litovchenko, A.N. Tyumentsev, E.P. Naiden, Peculiarities of martensite transformation and evolution of defect microstructure in metastable austenitic steel rolled at room temperature, Physical Mesomechanics. 14 (2014) 31-42.

Google Scholar

[13] K.G. Field, M.N. Gussev, J.T. Busby, Microstructural characterization of deformation localization at small strains in a neutron-irradiated 304 stainless steel, J. Nucl. Mater. 452 (2014) 500-508.

DOI: 10.1016/j.jnucmat.2014.05.053

Google Scholar

[14] M. N. Gussev, K. G. Field, J. T. Busby, Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain, J. Nucl. Mater. 446 (2014) 187-192.

DOI: 10.1016/j.jnucmat.2013.11.041

Google Scholar

[15] I.De Diego-Calderón, P. Rodriguez-Calvillo, A. Lara, J.M. Molina-Aldareguia, R.H. Petrov, D. De Knijf, I. Sabirov, Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite, Mater. Sci. Eng. A. 641 (2015).

DOI: 10.1016/j.msea.2015.06.034

Google Scholar

[16] I.Y. Litovchenko, N.A. Polekhina, A.N. Tyumentsev, E.P. Naiden, S.A. Akkuzin, Proporoperties of Metastable Austenitic Steel Subjected to Low-temperature and Subsequent warm Deformation, Russian Physics Journal. 59 (2016) 782-787.

DOI: 10.1007/s11182-016-0837-1

Google Scholar

[17] S. Ueki, Y. Mine, K. Takashima, Crystallographic study of hydrogen-induced twin boundary separation in type 304 stainless steel under cyclic loading, Corros. Sci. 129 (2017) 205-213.

DOI: 10.1016/j.corsci.2017.10.013

Google Scholar

[18] I.Yu. Pyshmintsev, A.O. Struin, A.M. Gervasyev, M.L. Lobanov, G.M. Rusakov, S.V. Danilov, A.B. Arabey, Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment, Metallurgist. 60 (2016).

DOI: 10.1007/s11015-016-0306-7

Google Scholar

[19] M.L. Lobanov, M.D. Borodina, S.V. Danilov, I.Yu. Pyshmintsev, A.O. Struin, Textural Heredity at Phase Transformations in Low-Carbon Low-Alloy Pipe Steel after Controlled Thermomechanical Processing, Izvestiya. Ferrous Metallurgy. 60 (2017).

DOI: 10.17073/0368-0797-2017-11-910-918

Google Scholar

[20] A.S. Belyaevskikh, M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, Improving the production of superthin anisotropic electrical steel, Steel. Transl. 45 (2015) 982-986.

DOI: 10.3103/s0967091215120037

Google Scholar

[21] M.L. Lobanov, G.M. Rusakov, A.A. Redikultsev, S.V. Belikov, M.S. Karabanalov, E.R. Struina, A.M. Gervas'ev, Research of special boundaries in lath martensite of low-carbon steel by orientation microscopy, Phys. Met. Metallogr. 117 (2016) 254-259.

DOI: 10.1134/s0031918x1603008x

Google Scholar

[22] A. I. Stepanov, I. N. Ashikhmina, K. I. Sergeeva, S. V.Belikov, S. A.Musikhin, M. S. Karabanalov, A. A. Al-Katawi, Structure and Properties of Low-Alloy Cr–Mo–V Steel after Austenitization in the Intercritical Temperature Range, Steel. 6 (2014).

DOI: 10.3103/s0967091214060151

Google Scholar

[23] N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater. 58 (2010) 895-903.

DOI: 10.1016/j.actamat.2009.10.004

Google Scholar

[24] Yu.G. Andreev, E.I. Zaykova, M.A. Shtremel, Borders and lineage boundary in batch martensite. Physics of Metals and Metallography. 3 (1990) 161-167.

Google Scholar

[25] V.M. Schastlivtsev, L.B. Blindt, L.B. Rodionov, I.D. Yakovleva, The structure of the batch martensite in structural steels, Phys. Met. Metallogr. 66 (1988) 759-769.

Google Scholar

[26] E.V. Nesterova, A.S. Rubtsov, V.P. Rybin, N.Yu. Zolotorevskii, High angle boundaries, resulting at phase transformations, Phys. Chem. Mech. Surfaces. 5 (1982) 30-35.

Google Scholar

[27] G.M. Rusakov, M.L. Lobanov, A.A. Redikul'cev, A.S. Belyaevskikh, Special disorientation and texture heredity in a technical alloy Fe-3% Si, Phys. Met. Metallogr. 115 (2014) 827-838.

DOI: 10.1134/s0031918x14080134

Google Scholar

[28] М. L. Lobanov, S. V. Danilov , V. I. Pastukhov, S. A. Averin, Y. Y. Khrunyk, A. A. Popov, The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Design. 109 (2016) 251-255.

DOI: 10.1016/j.matdes.2016.06.103

Google Scholar