[1]
E.F. William, Metal Additive Manufacturing: A Review, J. of Mat. Engin. and Perf., 23 (2014) 1917-(1928).
Google Scholar
[2]
D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials processes and mechanisms, International Materials Reviews, 57(3) (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[3]
C. Kenel, G., G. Dasargyri, T. Bauer, A. Colella , A.B. Spierings , C. Leinenbach, Wegener Selective laser melting of an oxide dis-persion strengthened (ODS) γ-TiAl alloy towards production of complex structures, Materials and Design, 134 (2017).
DOI: 10.1016/j.matdes.2017.08.034
Google Scholar
[4]
Erwin Rauch, Marco Unterhofer, Patrick Dallasega Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems Manufacturing Letters, 56 (2017) 43-48.
DOI: 10.1016/j.mfglet.2017.12.011
Google Scholar
[5]
T. Deb Roy, H.L. Wei, , J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components, Process, structure and properties, Progress in Materials Science, 92 (2018).
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[6]
B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Additive manufacturing by direct metal deposition, Advanced Materials & Processing, 169 (2011) 33-36.
Google Scholar
[7]
L.E. Murr, Edwin Martinez Krista N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, Frank Medina Ryan B. Wicker, Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science, Journal of Materials Research and Technology, 1 (2012).
DOI: 10.1016/s2238-7854(12)70009-1
Google Scholar
[8]
U. Zerbst, K. Hilgenberg, Damage development and damage tolerance of structures manufactured by selective laser melting – a review, Procedia Structural Integrity, 7(2017) 141-148.
DOI: 10.1016/j.prostr.2017.11.071
Google Scholar
[9]
Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Weia Wei Zhou, Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing, Engineering, 5 (2017) 695-700.
DOI: 10.1016/j.eng.2017.05.012
Google Scholar
[10]
B. Baufeld, E. Brandl, Omer van der Biest, Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, Journal of Materials Processing Technology, 21(2011).
DOI: 10.1016/j.jmatprotec.2011.01.018
Google Scholar
[11]
V. Matilainen, H. Piili, A. Salminena, T. Syvänenc, O. Nyrhilä, Characterization of Process Efficiency Improvement in Laser Additive Manufacturing, Physics Procedia, 56 (2014) 317-326.
DOI: 10.1016/j.phpro.2014.08.177
Google Scholar
[12]
E. Brand, V. Michailov, B. Viehweger, C. Leyens, Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads, Surface & Coatings Technology 206 (2011) 1130-1141.
DOI: 10.1016/j.surfcoat.2011.07.094
Google Scholar
[13]
C. Zhang, Yu. Li, M. Gao, X. Zeng, Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source, Materials Science & Engineering, A 711 (2018) 415-423.
DOI: 10.1016/j.msea.2017.11.084
Google Scholar
[14]
D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests, International Journal of Advanced Manufacturing Technology, 81 (2015) 465-481.
DOI: 10.1007/s00170-015-7077-3
Google Scholar
[15]
C.M.A. Silva, I.M.F. Bragança, A. Cabrita, L. Quintino, P.A.F., Formability of a wire arc deposited aluminum alloy, Martins Journal of the Brazilian Society of Mechanical Sciences and Engineering, 216 (2017) 134-149.
DOI: 10.1007/s40430-017-0864-z
Google Scholar
[16]
J. Gu, J. Ding, S.W. Williams, H. Gu, P.Ma, Y. Zhai, The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys, Journal of Materials Processing Technology, 230 (2016) 26-34.
DOI: 10.1016/j.jmatprotec.2015.11.006
Google Scholar
[17]
J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai, P. Ma, The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3 Cu alloy, Materials Science and Engineering: A 651(2016).
DOI: 10.1016/j.msea.2015.10.101
Google Scholar
[18]
S.M. Thompsona, L. Bianc, N. Shamsaeia, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing, Additive Manufacturing, 18 (2015) 36-42.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[19]
G.A. Turichin, I.A. Tsibulskiy, M.V. Kuznetsov, Distribution of magnesium in the weld metal during laser-arc welding of aluminum-magnesium alloys, Scientific and technical statements of SPbSPU. Economic sciences, 4 (2012) 156-159.
Google Scholar