Influence of Technological Parameters of Direct Laser Deposition Process on the Structure and Properties of Deposited Products from Alloy Ti-6Al-4V

Article Preview

Abstract:

The technology of direct laser deposition is the most promising for using in various industries. One of the most interesting areas for using this technology is an aviation industry. Due to their unique properties, titanium alloys are widely used in the aircraft industry for gas turbine engine components. In this paper, the effect of DLD process parameters on defect formation and structure is considered. The influence of energy density on the mechanical properties of parts is determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

306-311

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive manufacturing of titanium alloy for aircraft components Procedia CIRP, 35 (2015) 55-60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[2] P. Singha, H. Pungotra, N.S. Kalsi, On the characteristics of titanium alloys for the aircraft applications, Materials Today: Proceedings, 4 (2017) 8971-8982.

DOI: 10.1016/j.matpr.2017.07.249

Google Scholar

[3] B. Kianiana, S. Tavassoli, T.C. Larsson, The Role of Additive Manufacturing Technology in Job Creation: An Exploratory Case Study of Suppliers of Additive Manufacturing in Sweden, Procedia CIRP, 12th Global Conference on Sustainable Manufacturing, Emerging Potentials. 26 (2015).

DOI: 10.1016/j.procir.2014.07.109

Google Scholar

[4] G.A. Ravi, C. Dance, S. Dilworth, M.A. Moataz, Fabrication of large Ti–6Al–4V structures by direct laser deposition, Journal of Alloys and Compounds, 629 (2015) 351-361.

DOI: 10.1016/j.jallcom.2014.12.234

Google Scholar

[5] E. Rauch, M. Unterhofer, P. Dallasega, Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems Manufacturing Letters, (2017).

DOI: 10.1016/j.mfglet.2017.12.011

Google Scholar

[6] H. Piili, A. Happonen, T. Väistö, V. Venkataramanan, J. Partanen, A. Salminena, Cost Estimation of Laser Additive Manufacturing of Stainless Steel, Physics Procedia. 78 (2015) 388-396.

DOI: 10.1016/j.phpro.2015.11.053

Google Scholar

[7] D. Gu, New metallic materials development by laser additive manufacturing, Laser Surface Engineering, 2015, 163-180.

DOI: 10.1016/b978-1-78242-074-3.00007-6

Google Scholar

[8] B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Additive manufacturing by direct metal deposition, Advanced Materials & Processing, 169 (2011) 33-36.

Google Scholar

[9] S.M. Thompsona, L. Bianc, N. Shamsaeia, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing, 8 (2015) 36-62.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[10] H.E. Cheikh, B. Courant, S. Branchu, X. Huang, J.-Y. Hascoet, R. Guille´n, Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures Optics and Lasers in Engineering 50 (2012).

DOI: 10.1016/j.optlaseng.2012.07.002

Google Scholar

[11] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons (2017).

DOI: 10.1016/j.bushor.2017.05.011

Google Scholar

[12] T. DebRoy, H.L. Wei, J.S. Zuback, T.Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A.Wilson-Heid, A.De, W.Zhang, Additive manufacturing of metallic components, Process, structure and properties. Progress in Materials Science, 92 (2018).

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[13] G.A. Turichin, A.Y. Travyanov, P.V. Petrovskiy, E.V. Zemlyakov, M. Kovac, S. Vondracek, A. Kondratiev, A.V. Khvan, V.V. Cheverikin, D.O. Ivanov, I.A. Bazhenova, A.T. Dinsdale, Prediction of solidification behaviour and microstructure of Ni based alloys obtained by casting and direct additive laser growth, Materials Science and Technology, 32(8) (2016).

DOI: 10.1179/1743284715y.0000000134

Google Scholar

[14] J.S. Keist, T.A. Palmer, Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition, Materials and Design, 106(2016) 482-494.

DOI: 10.1016/j.matdes.2016.05.045

Google Scholar

[15] X.G. Fan, H. Yang, P.F. Gao, S.L. Yan, Dependence of microstructure morphology on processing in subtransus isothermal local loading forming of TA15 titanium alloy, Materials Science and Engineering, A 546(2012) 46-52.

DOI: 10.1016/j.msea.2012.03.021

Google Scholar

[16] Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming, Acta Material, 132 (2017) 82-95.

DOI: 10.1016/j.actamat.2017.04.026

Google Scholar

[17] A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V, Materials Science and Engineering: A 655 (2016) 100-112.

DOI: 10.1016/j.msea.2015.12.026

Google Scholar

[18] G.A. Turichin, V.V. Somonov, K.D. Babkin, E.V. Zemlyakov, O.G. Klimova, High-speed direct laser deposition: technology, equipment and materials, IOP Conference Series: Materials Science and Engineering Current Problems and Solutions, 125 (2016).

DOI: 10.1088/1757-899x/125/1/012009

Google Scholar

[19] M.O. Sklyar, O.G. Klimova-Korsmik, V.V. Cheverikin, Formation Structure and Properties of Parts from Titanium Alloys Produced by Direct Laser Deposition, Solid State Phenomena, 265 (2017) 535-541.

DOI: 10.4028/www.scientific.net/ssp.265.535

Google Scholar

[20] V. Matilainen, H. Piili, A. Salminena, T. Syvänenc, O. Nyrhilä, Characterization of Process Efficiency Improvement in Laser Additive Manufacturing, Physics Procedia, 56 (2014) 317-326.

DOI: 10.1016/j.phpro.2014.08.177

Google Scholar