[1]
V.I. Elagin, Doping of deformable aluminum alloys with transition metals. Moscow: Metallurgy, (1975).
Google Scholar
[2]
V.I. Elagin, History, successes and problems of alloying of aluminum alloys with transition metals, Technology of Light Alloys, 3 (2004) 6 -29.
Google Scholar
[3]
T. Tian, X.F. Wang, W. Li, Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X = transition or main group metal) intermetallic compounds, Solid State Communications, 156 (2013) 69-75.
DOI: 10.1016/j.ssc.2012.10.021
Google Scholar
[4]
N.A. Belov, A.N. Alabin, A.A. Yakovlev, Effect of the annealing temperature on the phase composition of cast alloy AL-0.55 wt. % Zr , Izvestiya Vuzov. Non-ferrous metallurgy, № (2013) 50-55.
DOI: 10.17073/0021-3438-2013-2-50-55
Google Scholar
[5]
S.B. Sidelnikov Comparative evaluation of the strength characteristics of the deformed semi-products in the alloys of Al-Zr system, obtained by different schemes of combined processing, Non-ferrous metals, 1 (2013) 86-90.
Google Scholar
[6]
V.N. Baranov, E.S. Lopatina, T.N. Drozdova and et al. Investigation of the effect of casting parameters on the structure of the Al-Zr system alloу, Foundry, 11 (2011) 16-18.
Google Scholar
[7]
V.M. Grigoryev, Investigation of aluminum alloys containing zirconium, Izvestiya Vuzov. Non-ferrous metallurgy. 3 (2011) 30-39.
Google Scholar
[8]
S.P. Yatsenko, V.M. Skachkov, P.A. Varchenya, Preparation of aluminum-based ligatures by the method of high-temperature exchange reactions in salt melts, Melt., 2 (2010) 89-94.
Google Scholar
[9]
K. Knipling, D. Dunand, D. Seidman, Metall and Mat Trans, A (2007) 38: 2552.
Google Scholar
[10]
W.S. Chang, B.C. Muddle, Metals and Materials, (1997) 3: 1.
Google Scholar
[11]
A.P. Amosov, Application of SHS processes for the production of alumo-matrix composite materials discretely reinforced with nano-sized titanium carbide particles IN SITU, Izvestiya Vuzov. Non-ferrous metallurgy. 1 (2016) 39-49.
DOI: 10.17073/0021-3438-2016-1-39-49
Google Scholar
[12]
S.N. Agafonov, S.A. Krasikov, A.A. Ponomarenko, Phase formation at aluminothermic reduction of ZrO2, Inorganic materials, 8 (2012) 927.
Google Scholar
[13]
V.I. Moskvitin, S.V. Makhov, D.A. Popov, Bases of kinetics and technology of aluminothermic synthesis of Al-Zr ligature from ZrO2 in chloride-fluoride salt melts, Non-ferrous metals, 11 (2014) 20-25.
Google Scholar
[14]
V.Yu. Bazhin, Ya.I. Kosov, O.L. Lobacheva, N.V. Dzhevaga, Synthesis of aluminum based scandium-yttrium master alloys, Russian Metallurgy (Metally), 7 (2015) 516-520.
DOI: 10.1134/s0036029515070034
Google Scholar
[15]
V.V. Gostishchev, I.A. Astapov, Hosen Ri, S.N. Khimukhin, A.V. Sereduk, High-temperature synthesis of complex aluminum nickelides, Perspective materials, 12. (2014) 59-65.
Google Scholar
[16]
O.D. Boyarchenko, Structure and properties of the composite material obtained in the regime of thermal explosion in the mixture of Ni + Al + Cr2O3, Physics of Combustion and Explosion. 1 (53) (2017) 48-56.
DOI: 10.1134/s0010508217010075
Google Scholar
[17]
A.S. Shchukin, S.G. Vadchenko, A.E. Sychev, Peculiarities of microstructure formation in the Ni-Al-W system in the SHS process = Features of the Microstructure Formation in the NI-AL-W System during SHS, Izvestiya Vuzov. Powder metallurgy and functional coatings, 2 (2017).
DOI: 10.17073/1997-308x-2017-2-72-78
Google Scholar
[18]
V.V. Sanin, Production of cast charge blanks from the nickel aluminide based alloy using self-propagating high-temperature synthesis and electrometallurgy methods, Perspective materials, 8 (2016) 74-83.
Google Scholar
[19]
V.V. Gostishchev, I.A. Astapov, S.N. Khimukhin, Exothermic synthesis of cast nickel aluminide alloys with tungsten carbide and molybdenum, Inorganic materials, 2(53) (2017) 145-148.
DOI: 10.1134/s0020168517020042
Google Scholar
[20]
V.V. Gostishchev, Production of complex-alloyed nickel aluminides and master alloy ligatures by metallothermy of metal oxides, Non-ferrous metals, 10 (898) (2017) 79-84.
Google Scholar