[1]
J. Xia, H. Jin, Numerical modeling of coupling thermal–metallurgical transformation phenomena of structural steel in the welding process, Advances in Engineering Software, (2017).
DOI: 10.1016/j.advengsoft.2017.08.011
Google Scholar
[2]
Efimenko L.A., Kapustin O.E., Merkulova A.O., Vyshemirskiy D.E. Peculiarities of processes of austenite decomposition of high-strength steels at multipass welding, Territory Neftegas,, 10 (2015) 104-109.
Google Scholar
[3]
P. Seyffarth, I.V. Krivtsun, Laser-Arc Processes and their Applications in Welding and Material Treatment, Taylor & Francis, USA, (2002).
DOI: 10.1201/9781482264821
Google Scholar
[4]
C. Bagger, F.O. Olsen, Review of laser hybrid welding, J. Laser Appl. 17 (2005) 2-14.
Google Scholar
[5]
J. Pilarczyk, M. Banasik, J. Dworak, S. Stano, Hybrid welding using laser beam and electric arc, Przeglad Spawalnictwa, 10 (2007) 44-48.
Google Scholar
[6]
U. Dilthey, A. Wieschemann, Prospects by combining and coupling laser beam and arc welding processes, Weld. World, 44 (2000) 37-46.
Google Scholar
[7]
Y.B. Chen, Z.L. Lei, L.Q. Li, L. Wu, Experimental study on welding characteristics of CO2 laser TIG hybrid welding process, Sci. Technol. Weld. Joining, 11(2006) 403-411.
DOI: 10.1179/174329306x129535
Google Scholar
[8]
M. Adak, N.R. Mandal, Numerical and experimental study of mitigation of welding distortion, Appl. Math. Model. 34 (2010) 146-158.
DOI: 10.1016/j.apm.2009.03.035
Google Scholar
[9]
Hee Seon Bang, Han Sur Bang, You Chul Kim, Sung Min Joo, Analysis of residual stress on AH32 butt joint by hybrid CO2 laser-GMA welding, Comp. Mat. Sci. 49 (2010) 217-221.
DOI: 10.1016/j.commatsci.2010.04.029
Google Scholar
[10]
R. Rai, S.M. Kelly, R.P. Martukanitz, T.A. Debroy, Convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel, Metall. Mater. Trans. A 39A (2008) 98-112.
DOI: 10.1007/s11661-007-9400-6
Google Scholar
[11]
A. Bokota, W. Piekarska, Modeling of residual stresses in laser welding, Paton Weld. J. 6 (2008) 19-24.
Google Scholar
[12]
L. Han, F.W. Liou, Numerical investigation of the influence of laser beam mode on melt pool, Int. J. Heat Mass Trans. 47 (2004) 4385-4402.
DOI: 10.1016/j.ijheatmasstransfer.2004.04.036
Google Scholar
[13]
V.I. Makhnenko, G.Y. Saprykina, Role of mathematical modelling in solving problems of welding dissimilar steels, Paton Weld. J. 3 (2002) 14-25.
Google Scholar
[14]
A. Anca, A. Cardona, J. Risso, V.D. Fachinotti, Finite element modeling of welding processes, Appl. Math. Model. 35 (2011) 688-707.
DOI: 10.1016/j.apm.2010.07.026
Google Scholar
[15]
A. De, T. DebRoy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters, Weld. J. 84 (2005) 101-111.
Google Scholar
[16]
G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, Appl. Math. Model. 26 (2002) 309-320.
DOI: 10.1016/s0307-904x(01)00063-4
Google Scholar
[17]
Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai, Modeling of the transport phenomena in GMAW using argon–helium mixtures. Part II – The metal, Int. J. Heat MassTrans. 53 (2010) 5722-5732.
DOI: 10.1016/j.ijheatmasstransfer.2010.08.010
Google Scholar
[18]
W. Piekarska, M. Kubiak, Three-dimensional model for numerical analysis of thermal phenomena in laser-arc hybrid welding process, Int. J. Heat Mass Trans. 54 (2011) 4966-4974.
DOI: 10.1016/j.ijheatmasstransfer.2011.07.010
Google Scholar
[19]
J. Zhou, H.L. Tsai, Modeling of transport phenomena in hybrid laser – MIG keyhole welding, Int. J. Heat Mass Trans. 51 (2008) 4353-4366.
DOI: 10.1016/j.ijheatmasstransfer.2008.02.011
Google Scholar
[20]
M.Kh. Shorshorov, T.A. Chernyshova, A.I. Krasovskiy, Testing of metals for weldability, Moscow: Metallurgy, (1972).
Google Scholar
[21]
L.A. Efimenko, A.K. Prygaev, O.Yu. Elagina, Metallography and heat treatment of welded joints, Moscow: Logos, (2007).
Google Scholar
[22]
L.A. Efimenko, O.Yu. Elagina, E.M. Vyshemirskiy, O.E. Kapustin, A.V. Muradov, A.K. Prygaev, Тraditional and perspective steels for the construction of trunk pipelines, Moscow: Logos (2011).
Google Scholar