Thermal Cycles and Peculiar Properties of Austenite Decomposition when Laser-Hybrid Welding Steel of K60 Strength Class

Article Preview

Abstract:

Welding is an important technology of joint in engineering structures. In addition to a residual stress influence to a quality of joint, an obstacle in welding analysis are complex phenomena including phase transformation, thermal cycle and microstructure kinetics. The influence appears in microstructure development, formation of defects and in transformation of metallurgy in a welded zone. This article experimentally defines thermal cycles and shows the results in study of peculiar properties of austenite decomposition kinetics when using the technology of laser-hybrid welding in combination with multiple arc automatic sub-merged welding. There defined the rates of cooling influencing the change of properties of welded joints from tube assortment steel of K60 strength class. We found that the result of impact of laser-hybrid welding process in a heat-affected zone is that the austenite decomposition in studied steels flows in martensite area generally. The hardness of seam metal and heat-affected zone of the studied steels is of range 350-360 HV, which increases a probability of crack-like, defects formation. We revealed the normative value of hardness, which can be provided if a metal cooling rate in laser-hybrid welding is about 20 °C/s.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

489-494

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Xia, H. Jin, Numerical modeling of coupling thermal–metallurgical transformation phenomena of structural steel in the welding process, Advances in Engineering Software, (2017).

DOI: 10.1016/j.advengsoft.2017.08.011

Google Scholar

[2] Efimenko L.A., Kapustin O.E., Merkulova A.O., Vyshemirskiy D.E. Peculiarities of processes of austenite decomposition of high-strength steels at multipass welding, Territory Neftegas,, 10 (2015) 104-109.

Google Scholar

[3] P. Seyffarth, I.V. Krivtsun, Laser-Arc Processes and their Applications in Welding and Material Treatment, Taylor & Francis, USA, (2002).

DOI: 10.1201/9781482264821

Google Scholar

[4] C. Bagger, F.O. Olsen, Review of laser hybrid welding, J. Laser Appl. 17 (2005) 2-14.

Google Scholar

[5] J. Pilarczyk, M. Banasik, J. Dworak, S. Stano, Hybrid welding using laser beam and electric arc, Przeglad Spawalnictwa, 10 (2007) 44-48.

Google Scholar

[6] U. Dilthey, A. Wieschemann, Prospects by combining and coupling laser beam and arc welding processes, Weld. World, 44 (2000) 37-46.

Google Scholar

[7] Y.B. Chen, Z.L. Lei, L.Q. Li, L. Wu, Experimental study on welding characteristics of CO2 laser TIG hybrid welding process, Sci. Technol. Weld. Joining, 11(2006) 403-411.

DOI: 10.1179/174329306x129535

Google Scholar

[8] M. Adak, N.R. Mandal, Numerical and experimental study of mitigation of welding distortion, Appl. Math. Model. 34 (2010) 146-158.

DOI: 10.1016/j.apm.2009.03.035

Google Scholar

[9] Hee Seon Bang, Han Sur Bang, You Chul Kim, Sung Min Joo, Analysis of residual stress on AH32 butt joint by hybrid CO2 laser-GMA welding, Comp. Mat. Sci. 49 (2010) 217-221.

DOI: 10.1016/j.commatsci.2010.04.029

Google Scholar

[10] R. Rai, S.M. Kelly, R.P. Martukanitz, T.A. Debroy, Convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel, Metall. Mater. Trans. A 39A (2008) 98-112.

DOI: 10.1007/s11661-007-9400-6

Google Scholar

[11] A. Bokota, W. Piekarska, Modeling of residual stresses in laser welding, Paton Weld. J. 6 (2008) 19-24.

Google Scholar

[12] L. Han, F.W. Liou, Numerical investigation of the influence of laser beam mode on melt pool, Int. J. Heat Mass Trans. 47 (2004) 4385-4402.

DOI: 10.1016/j.ijheatmasstransfer.2004.04.036

Google Scholar

[13] V.I. Makhnenko, G.Y. Saprykina, Role of mathematical modelling in solving problems of welding dissimilar steels, Paton Weld. J. 3 (2002) 14-25.

Google Scholar

[14] A. Anca, A. Cardona, J. Risso, V.D. Fachinotti, Finite element modeling of welding processes, Appl. Math. Model. 35 (2011) 688-707.

DOI: 10.1016/j.apm.2010.07.026

Google Scholar

[15] A. De, T. DebRoy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters, Weld. J. 84 (2005) 101-111.

Google Scholar

[16] G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, Appl. Math. Model. 26 (2002) 309-320.

DOI: 10.1016/s0307-904x(01)00063-4

Google Scholar

[17] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai, Modeling of the transport phenomena in GMAW using argon–helium mixtures. Part II – The metal, Int. J. Heat MassTrans. 53 (2010) 5722-5732.

DOI: 10.1016/j.ijheatmasstransfer.2010.08.010

Google Scholar

[18] W. Piekarska, M. Kubiak, Three-dimensional model for numerical analysis of thermal phenomena in laser-arc hybrid welding process, Int. J. Heat Mass Trans. 54 (2011) 4966-4974.

DOI: 10.1016/j.ijheatmasstransfer.2011.07.010

Google Scholar

[19] J. Zhou, H.L. Tsai, Modeling of transport phenomena in hybrid laser – MIG keyhole welding, Int. J. Heat Mass Trans. 51 (2008) 4353-4366.

DOI: 10.1016/j.ijheatmasstransfer.2008.02.011

Google Scholar

[20] M.Kh. Shorshorov, T.A. Chernyshova, A.I. Krasovskiy, Testing of metals for weldability, Moscow: Metallurgy, (1972).

Google Scholar

[21] L.A. Efimenko, A.K. Prygaev, O.Yu. Elagina, Metallography and heat treatment of welded joints, Moscow: Logos, (2007).

Google Scholar

[22] L.A. Efimenko, O.Yu. Elagina, E.M. Vyshemirskiy, O.E. Kapustin, A.V. Muradov, A.K. Prygaev, Тraditional and perspective steels for the construction of trunk pipelines, Moscow: Logos (2011).

Google Scholar