The Possibility of Obtaining Electrical Steel with Texture {100} <001>

Article Preview

Abstract:

We have investigated the cold rolling mesostructure and recrystallization of BCC crystals {110} <110> Fe-3%Si using a method of orientation microscopy. The 40% deformation caused shear bands with habit plane at a slope of ~20 ... 28° to the direction of rolling to form a "fishbone"-type structure. The orientation of the crystal lattice in SBs was close to {100} <001>. It can be represented as a rotation around TD close to the crystallographic direction [001] at an angle of ~ ± 37°. Such disorientation corresponds to the special disorientation CSL Σ5 (36.87о, axis [001]) between SBs and the matrix. Primary recrystallization centers in previously deformed crystal {110} <110> are formed primarily in SBs. Their orientation appears to be close to the orientation {100} <001>. It has been shown that the usage of patterns of texture formation in the shear bands of original crystallites {110} <110> allows to obtain electrical steel with a cubic texture {100} <001>.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

483-488

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.K. Sokolov, V.V. Gubernatorov, I.V. Gervasyeva, A.K. Sbitnev And L.R. Vladimirov, The Deformation And Shear Bands In The Fe-3%Si Alloy, Textures and Microstructures. 32 (1999), 21-39.

DOI: 10.1155/tsm.32.21

Google Scholar

[2] H. Paul, J.H. Driver, C. Maurice, Z. Jasien´ski, Shear band microtexture formation in twinned face centred cubic single crystals, Materials Science and Engineering. A359 (2003) 178-191.

DOI: 10.1016/s0921-5093(03)00335-6

Google Scholar

[3] Q. XUE and G.T. GRAY, III, Development of Adiabatic Shear Bands in Annealed 316L Stainless Steel: Part I. Correlation between Evolving Microstructure and Mechanical Behavior, Metallurgical And Materials Transactions A. 37A (2006) 2436-2446.

DOI: 10.1007/bf02586217

Google Scholar

[4] D. Dorner, S. Zaefferer, D. Raabe. Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Mater. 55 (2007) 2519-2530.

DOI: 10.1016/j.actamat.2006.11.048

Google Scholar

[5] B. Hutchinson, Deformation Substructures and Recrystallisation, Materials Science Forum. 558-559 (2007) 13-22.

DOI: 10.4028/www.scientific.net/msf.558-559.13

Google Scholar

[6] D. Dorner, Y. Adachi and K. Tsuzaki, Periodic crystal lattice rotation in microband groups in a bcc metal, Scripta Materialia. 57 (2007) 775-778.

DOI: 10.1016/j.scriptamat.2007.06.048

Google Scholar

[7] J. Peirs , W. Tirry, Amin-Ahmadi et al, Microstructure of adiabatic shear bands in Ti6Al4V, Materials Characterization. 75 (2012) 79-92.

DOI: 10.1016/j.matchar.2012.10.009

Google Scholar

[8] T. Nguyen-Minh, J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Occurrence of shear bands in rotated Goss ({110}<110>) orientations of metals with bcc crystal structure, Scripta Materialia. 67, 935-938.

DOI: 10.1016/j.scriptamat.2012.08.017

Google Scholar

[9] I. L. Dillamore, J. G. Roberts, A. C. Bush. Occurrence of shear bands in heavily rolled cubic metals, Mater. Sci. 13 (1979) 73-77.

DOI: 10.1179/msc.1979.13.2.73

Google Scholar

[10] J.W. Hutchinson, Tvergaard V., Shear band formation in plane strain, International Journal of Solids and Structures. 17 (1981) 451-470.

DOI: 10.1016/0020-7683(81)90053-6

Google Scholar

[11] S. Li, W. Kam Liu, A.J. Rosakis, T. Belytschko, W. Hao, Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition, International Journal of Solids and Structures. 39 (2002) 1213-1240.

DOI: 10.1016/s0020-7683(01)00188-3

Google Scholar

[12] S. Mahesh, Deformation banding and shear banding in single crystals, Acta Materialia. 54 (2006) 4565-4574.

DOI: 10.1016/j.actamat.2006.05.043

Google Scholar

[13] G.M. Rusakov, M.L. Lobanov, A.A. Redikultsev and I.V. Kagan, Model of {110}<001> Texture Formation in Shear Bands during Cold Rolling of Fe-3 Pct Si Alloy, Metallurgical and materials transactions A. 40 (2009) 1023-1025.

DOI: 10.1007/s11661-009-9791-7

Google Scholar

[14] G.M. Rusakov, A.A. Redikul'tsev, I.V. Kagan and M.L. Lobanov, Mechanism of Formation of Shear Bands upon Cold Deformation of a Commercial Fe-3% Si Alloy, The Physics of Metals and Metallography. 109 (2010) 662-669.

DOI: 10.1134/s0031918x10060141

Google Scholar

[15] M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev and L.V. Lobanova, Formation of Special Disorientations Related to Transition Bands in Structure of Deformed and Annealed Single Crystal (110).

DOI: 10.1134/s0031918x13010067

Google Scholar

[16] G. I. Tailor, Plastic strain in metals, Journ. Inst. Met. 62 (1938) 307-324.

Google Scholar

[1] of Fe-3% Si Alloy, The Physics of Metals and Metallography. 114 (2013) 27-32.

Google Scholar

[17] K. Ushioda and W. B. Hutchinson, Role of Shear Bands in Annealing Texture Formation in 3%Si-Fe Single Crystals, ISIJ Int. 29 (1989) 862-867.

DOI: 10.2355/isijinternational.29.862

Google Scholar

[18] M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, A.S. Belyaevskikh, Special Misorientations and Textural Heredity in the Commercial Alloy Fe-3% Si, The Physics of Metals and Metallography. 115 (2014) 775-785.

DOI: 10.1134/s0031918x14080134

Google Scholar

[19] S. Hartley. Twins and stacking faults on {310} planes in body-centred cubic metals, Phil. Mag. 14 (1966) 1207-1217.

DOI: 10.1080/14786436608224286

Google Scholar