To the Influence of the Deformation Speed on Hardening Process during the Cold Sheet Forming

Article Preview

Abstract:

The accuracy of the simulation results of stamping processes of thin sheet material depends on the correct properties’ specification, namely stamping ability. Experiments have been carried out and the influence of the deformation speed on the hardening exponent during cold sheet metal forming was studied. It was found out, that strain changed 100 times can influence the strain grade of the hardening curve of about 10%. This regularity has been taken into consideration prior to the calculation in any CAE-software for material forming.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

513-518

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Yu. Averkiev, S.I. Vdovin, N.F. Shpunkin, Ya.A. Sobolev et al, Listovaya shtampovka (Sheet metal forming), in: S.S. Yakovlev (Eds.), Handbook of forging and stamping, Mashinostroenie, Moscow, 4 (2010) 732.

Google Scholar

[2] V.S. Bondar, S.A. Tipalin, N.F. Shpunkin, Gibka I skrutchivanie lista (Bending and torsion of sheet). University of Mechanical Engineering, Moscow, (2014).

Google Scholar

[3] S.A. Tipalin, Opredelenie nakoplennoy deformacii v processe vidavlivaniya tekhnologithceskoy kanavki (Estimation of collected deformation during the process of technological groove extrusion), Zagotovitelnie proizvodstva v mashinostroenii (Blank productions in mechanical engineering), 8 (2013).

Google Scholar

[4] M.V. Storozhev, E.A. Popov, Teoriya obrabotki metallov davleniem (Metal forming theory), fourth ed., Mashinostroenie, Moscow, (1977).

Google Scholar

[5] S. Tipalin, M. Petrov, B. Saprikin et al, Numerical and experimental investigation of deep drawing of sandwich panels, Key Engineering Materials, 611-612 (2014) 1627-1636.

DOI: 10.4028/www.scientific.net/kem.611-612.1627

Google Scholar

[6] M. Petrov, S. Tipalin, J. Bast et al, Umformen eines Verbundwerkstoffs aus Stahlblechen, Konstruktion, 7/8 (2012) 5-7.

Google Scholar

[7] S. Tipalin, M. Nikitin, N. Schpunkin, Experimental study of V-bending process of steel-polymer-steel sheets at room temperature, Computer Methods in Materials Science, 8(3) (2008) 138-143.

Google Scholar

[8] P. Petrov, V. Voronkov, K. Potapenko et al, Research into the flow stress of Al-Mg-Si alloy (AD-35) during the abrupt change of the strain rate at elevated temperatures, Key Engineering Materials, 554-557 (2013) 1099-1104.

DOI: 10.4028/www.scientific.net/kem.554-557.1099

Google Scholar

[9] P. Petrov, D. Gnevashev, A. Dubinchin Effect of temperature and strain rate on friction factor during hot deformation of Al-Mn and Al-Cu-Mg alloys, Computer Methods in Materials Science, 9(1) (2009) 55-60.

Google Scholar

[10] E.W. Hart, A theory for flow of polycrystals, Acta Metallurgica, 15(9) (1967) 1545-1549.

DOI: 10.1016/0001-6160(67)90185-x

Google Scholar

[11] M.F. Abbod, C.M. Sellars, D.A. Linkens et al, Validation and generalisation of hybrid models for flow stress and recrystallisation behaviour of aluminium–magnesium alloys, Materials Science and Engineering: A 395(1-2) (2005) 35-46.

DOI: 10.1016/j.msea.2004.12.003

Google Scholar

[12] P.I. Polukhin, G.Ya. Gun, A.M. Galkin, Soprotivlenie plastitcheskoy deformacii metallov i splavov (Plastic deformation of metals and alloys), second ed., Metallurgiya, Moscow, (1983).

Google Scholar

[13] N.N. Malinin, Prikladnaya teoriya plastitchnosti (Applied plasticity and creeping theory), Mashinostroenie, Moscow, (1975).

Google Scholar

[14] P. Skubisz, M. Rumiński, Ł. Lisiecki, Estimation of Strain-Hardness Correlation in Cold-Forged Austenitic Stainless Steel, Key Engineering Materials, 622-623 (2014) 179-185.

DOI: 10.4028/www.scientific.net/kem.622-623.179

Google Scholar

[15] M. Ambroziński, S. Polak, Z. Gronostajski et al, Numerical simulation of crash test accounting for the strain hardening in the manufacturing process of energy-absorbing part in the car body, Mechanik, 88(2) (2015) 92-97.

DOI: 10.17814/mechanik.2015.2.22

Google Scholar

[16] L. Madej, K. Muszka, P. Perzynski, Computer aided development of the levelling technology for flat products, CIRP Annals–Manufacturing Technology, 60 (2011) 291-294.

DOI: 10.1016/j.cirp.2011.03.137

Google Scholar

[17] J. Majta, K. Muszka, Modelling microstructure evolution and work hardening in conventional and ultrafine-grained microalloyed steels, in: J. Lin, D. Balint, M. Pietrzyk (Eds.) Microstructure evolution in metal forming processes, Corwall, Woodhead Publishing, (2012).

DOI: 10.1533/9780857096340.2.237

Google Scholar

[18] S.A. Tipalin, B.Yu. Saprikin, Pruzhinenie mnogosloynogo materiala (Springback effect of the multilayered materials), 2(2:16) (2013) 198-202.

Google Scholar

[19] N.F. Shpunkin, Tekhnologitchnoct shtampovannikh listovikh detaley (Technological aspects of the stamped sheet parts), University of Mechanical Engineering, Moscow, (2015).

Google Scholar

[20] N.F. Shpunkin, S.A. Tipalin, Issledovanie svoystv mnogosloynikh listovikh materialov (Investigation of the properties of multilayered materials), Zagotovitelnie proizvodstva v mashinostroenii (Blank productions in mechanical engineering), 1 (2013).

Google Scholar