p.40
p.49
p.54
p.59
p.64
p.69
p.75
p.80
p.86
Adsorption and Photocatalytic Kinetic of Wastewater Treatment by Photocatalyst - Alginate/Polyvinyl Alcohol Composite Beads
Abstract:
Photocatalyst composite beads were applied as adsorbent substances in the waste water treatment process. The beads were synthesised using different photocatalyst types in sodium alginate-polyvinyl alcohol matrix (SA-PVA) as commercial ZnO (ZnO/SA-PVA), synthesised ZnO (ZnO(syn)/SA-PVA), and synthesised ZnO-graphene oxide (ZnO(syn)-GO/SA-PVA). The morphology and photocatalytic activity of the composite beads were studied utilising X-ray diffractometry, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Photocatalytic activity was studied by methylene blue removal, pseudo-first order rate (k1), pseudo-second order rate (k2), the kinetics of adsorption at equilibrium (qe), pseudo-first (K1) and pseudo-second (K2) order adsorption kinetics. The results confirmed that photocatalytic activity was enhanced by the addition of GO in the photocatalyst composite beads. The results confirmed that the MB removal efficiency of ZnO(syn)-GO/SA-PVA composite bead was the best for all conditions described by k1, k2 and qt at around 0.0139 min-1, 0.0302 L.mg-1min-1 and 8.818 mg.g-1, respectively, under visible irradiation. In addition, the adsorption kinetics system was considered by the pseudo-first order and pseudo-second order adsorption kinetics, in which ZnO(syn)-GO/SA-PVA composite beads were around 0.0259 min-1 and 0.232 g.mg-1min-1, respectively.
Info:
Periodical:
Pages:
69-74
Citation:
Online since:
February 2019
Authors:
Keywords:
Price:
Сopyright:
© 2019 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: