An Application of Multigrain Approaches to the Structural Solution of Grains from Polycrystalline Samples

Article Preview

Abstract:

The overlap of diffraction spots from different grains was investigated to understand the influence of experimental factors on the x-ray diffraction data quality and to optimize the experimental parameters for data collection on polycrystalline samples. Diffraction patterns for photoactive polycrystals were indexed and sorted with respect to grains using multigrain approaches. The indexing of diffraction spots and the identification of grains for tetrathiafulvalene-p-chloranil samples were performed using the ImageD11, GrainSpotter, GRAINDEX and Cell_now programs. In many cases, comparison of the results from these programs shows good agreement. For the individual grains from polycrystalline samples, the crystal structure was solved and refined using the SHELXTL program. After the structural refinement of the grains, the best and the average R1 values were 1.93% and 2.06%, respectively, which are on a comparable resolution level with that obtained from the x-ray single crystal measurements.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

119-123

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Schmidt, H.F. Poulsen, G.B.M. Vaughan, J. Appl. Cryst. 36 (2003) 326–332.

Google Scholar

[2] G.B.M. Vaughan, S. Schmidt, H.F. Poulsen, Z. Kristallogr. 219 (2004) 813–825.

Google Scholar

[3] H.F. Poulsen, Three-Dimensional X-ray Diffraction Microscopy, Springer, Berlin, (2004).

Google Scholar

[4] J. Wright, http://www.fable.svn.sourceforge.net/svnroot/fable/ImageD11/. ESRF, (2005).

Google Scholar

[5] J.B. Torrance, A. Girlando, J.J. Crowley, V.Y. Lee, P. Batail, S.J. LaPlaca, Phys. Rev. Lett. 47 (1981) 1747-49.

DOI: 10.1103/physrevlett.47.1747

Google Scholar

[6] M. Hanfland, A. Brillante, A. Girlando, K. Syassen, Phys. Rev. B 38 (1988) 1456-61.

Google Scholar

[7] S. Koshihara, Y. Takahashi, H. Sakai, Y. Tokura, T. Luty, J. Phys. Chem. B 103 (1999) 2592-2600.

Google Scholar

[8] K. Kikuchi, K. Yakushi, H. Kuroda, Sol. State Com., 44(2) (1982) 151-154.

Google Scholar

[9] K.Tanimura, I. Akimoto, J. of Lumines. 94-95 (2001) 483-488.

Google Scholar

[10] S. Koshihara, Y. Tokura, N. Sarukura, Y. Segawa, T. Koda, K. Takeda, Synth. Metals, 70 (1995) 1225-1226.

DOI: 10.1016/0379-6779(94)02829-n

Google Scholar

[11] E. Collet, M.H. Lemee-Cailleau, M.B.L. Cointe, H. Cailleau, M. Wulff, T. Luty, S.Y. Koshihara, M. Meyer, L. Toupet, P. Rabiller, S. Techert, Science 300 (2003) 612-615.

DOI: 10.1126/science.1082001

Google Scholar

[12] M. Messerschmidt, Th. Tschentscher, M. Cammarata, A. Meents, Ch. Sager, J. Davaasambuu, S. Techert, G. Busse, J. Phys. Chem. A114 (2010) 7677-7681.

DOI: 10.1021/jp104081b

Google Scholar

[13] H.O. Soerensen, S. Schmidt, J.P. Wright, G.B.M. Vaughan, S. Techert, E.F. Garman, J. Oddershede, J. Davaasambuu and H.F. Poulsen, Z.Kristallogr. 227 (2012) 63-78.

DOI: 10.1524/zkri.2012.1438

Google Scholar

[14] H.O. Soerensen, http://www.fable.svn.sourceforge.net/svnroot/fable/farfield.

Google Scholar

[15] E.M. Lauridsen, S. Schmidt, R.M. Suter, H.F. Poulsen, J. Appl. Cryst. 34 (2001) 744–750.

Google Scholar

[16] S. Schmidt, http://www.fable.svn.sourceforge.net/svnroot/fable/GrainSpotter, Risoe National Laboratory, Technical University of Denmark, (2010).

Google Scholar

[17] G.M. Sheldrick, Cell_now and SADABS, University of Goettingen, (2002).

Google Scholar

[18] G.M. Sheldrick, Acta Cryst. A 64 (2008) 112–122.

Google Scholar