Comparison Study on Antimicrobial and Photocatalytic Activity of Different Shaped ZnO Nanoparticles

Article Preview

Abstract:

ZnO nanoparticles (ZnO NPs) were synthesized through surfactant free non-hydrolytic organic phase method in which zinc acetate and zinc acetylacetonate were selected as precursors. Structural and size analysis of the as-prepared nanoparticles performed on X-ray diffractometer, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the obtained nanoparticles were crystalline particles with all reflections matching to wurtzite. TEM images revealed that ZnO NPs from synthesis in which zinc acetate involved as precursor had a shape of sphere while zinc acetylacetonate resulted in rod-shaped nanoparticles. Reaction rates from catalytic activity test performed on Methylene Blue dye (MB) were found to be 2.99×10-2 min-1 and 1.98×10-2 min-1 for spherical and rod-shaped ZnO NPs, respectively. Antibacterial activity experiments shows rod-shaped ZnO NPs almost completely (99.75%) inhibited the growth of Escherichia Coli while only around 6.5% was survived after treatment of spherical ZnO NPs under same conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

87-97

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muhammad Sajjad, Inam Ullah, M. I. Khan, Jamshid Khan, M. Yaqoob Khan, Muhammad Tauseef Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Result in Physics. 9 (2018) 1301-1309.

DOI: 10.1016/j.rinp.2018.04.010

Google Scholar

[2] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis characterization and optical properties of zinc oxide nanoparticles, Int. Nano Lett. 3 (2013) 2-6.

DOI: 10.1186/2228-5326-3-30

Google Scholar

[3] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection, Sensors Actuators, B Chem. 162 (2012) 237-243.

DOI: 10.1016/j.snb.2011.12.073

Google Scholar

[4] T. Pauporté, C. Magne, Impedance spectroscopy study of N719-sensitized ZnO-based solar cells, Thin Solid Films. 560 (2014) 20-26.

DOI: 10.1016/j.tsf.2013.11.121

Google Scholar

[5] M. Gririraj, K. Murugan, Niroj K. Sahu, K. Hembram, High Performance Multi-Layer Varistor (MLV) from Doped ZnO Nanopowders by Water Based Tape Casting: Rheology, Sintering, Microstructure and Properties, Ceramics International. S0272-8842(18)30231-1.

DOI: 10.1016/j.ceramint.2018.01.218

Google Scholar

[6] S. Jha, J.-C. Qian, O. Kutsay, J. Kovac, C.-Y. Luan, J.A. Zapien, Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability, Nanotechnology. 22 (2011) 245202.

DOI: 10.1088/0957-4484/22/24/245202

Google Scholar

[7] H. Lorenz, M. Friedrich, M. Armbrüster, B. Klötzer, S. Penner, ZnO is a CO2-selective steam reforming catalyst, J. Catal. 297 (2013) 151-154.

DOI: 10.1016/j.jcat.2012.10.003

Google Scholar

[8] S. Snega, K. Ravichandran, N. Jabena Begum, K. Thirumurugan, Enhancement in the electrical and antibacterial properties of sprayed ZnO films by simultaneous doping of Mg and F, J. Mater. Sci. Mater. Electron. 24 (2013) 135-141.

DOI: 10.1007/s10854-012-0956-6

Google Scholar

[9] Haijun Zhang, Baoan Chen, Hui Jiang, Cailian Wang, Huangping Wang, Xuemei Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment, Biomaterials. 32 (2011) 1906-1914.

DOI: 10.1016/j.biomaterials.2010.11.027

Google Scholar

[10] A. Sáaedi, R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, A. Khorsand Zak, N.M. Huang, Optical and electrical properties of p-type Li-doped ZnO nanowires, Superlattices and Microstructures. 61 (2013) 91-96.

DOI: 10.1016/j.spmi.2013.06.014

Google Scholar

[11] Q. Xu, S. Zhou, H. Schmidt, Magnetic properties of ZnO nanopowders, J. Alloys and Compounds. 487 (2009) 665-667.

DOI: 10.1016/j.jallcom.2009.08.033

Google Scholar

[12] Wenzhong Shen, Zhijie Li, Hui Wang, Yihong Liu, Qingjie Guoa, Yuanli Zhang, Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods, Journal of Hazardous Materials. 152 (2008) 172-175.

DOI: 10.1016/j.jhazmat.2007.06.082

Google Scholar

[13] Manish Mittal, Manoj Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method, Solar Energy. 110 (2014) 386-397.

DOI: 10.1016/j.solener.2014.09.026

Google Scholar

[14] Elilarassi R, Chandrasekaran G, Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications, Optoelectronics Letter. 6 (2010) 6-10.

DOI: 10.1007/s11801-010-9236-y

Google Scholar

[15] Sumetha Suwanboon, Pongsaton Amornpitoksuk, Phuwadol Bangrak, Synthesis, characterization and optical properties of Zn1xTixO nanoparticles prepared via a high-energy ball milling technique, Ceramics International. 37 (2011) 333-340.

DOI: 10.1016/j.ceramint.2010.08.039

Google Scholar

[16] Zeyan Wang, Baibiao Huang, Ying Dai, Xiaoyan Qin, Xiaoyang Zhang, Peng Wang, Haixia Liu, Jiaoxian Yu, Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method, J. Phys. Chem. C. 113 (2009) 4612-4617.

DOI: 10.1021/jp8107683

Google Scholar

[17] Huilian Liu, Jinghai Yang a, Zhong Hua, Yongjun Zhang, Lili Yang, Li Xiao, Zhi Xie, The structure and magnetic properties of Cu-doped ZnO prepared by sol–gel method, Applied surface science. 256 (2010) 4162-4165.

DOI: 10.1016/j.apsusc.2010.01.118

Google Scholar

[18] N. Rajeswari Yogamalar, Arumugam Chandra Bose, Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor, Journal of solid state chemistry. 184 (2011) 12-20.

DOI: 10.1016/j.jssc.2010.10.024

Google Scholar

[19] Nicola Pinna, Markus Niederberger, Surfactant free nonaqueous synthesis of metal oxide nanostructure, Angew. Chem. Int. Ed. 47 (2008) 5292-5304.

DOI: 10.1002/anie.200704541

Google Scholar

[20] Fatemeh Elmi, Heshmatollah Alinezhad, Zahra Moulana, Fatemeh Salehian, Sahar Mohseni Tavakkoli, Fariba Asgharpour, Horrieh Fallah, Maryam Mitra Elmi, The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water science and technology. (2014) 763-770.

DOI: 10.2166/wst.2014.232

Google Scholar

[21] Amna Sirelkhatim, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan, Dasmawati Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano Micro Letters. 7 (2015) 219-242.

DOI: 10.1007/s40820-015-0040-x

Google Scholar

[22] Irith Wiegand, Kai Hilpert, Robert E W Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nature Protocol. 3 (2008) 163-175.

DOI: 10.1038/nprot.2007.521

Google Scholar

[23] Abebe Balcha, Om Prakash Yadav, Tania Dey, Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods, Environmental science and pollution research international. 23(24) (2016) 25485-25493.

DOI: 10.1007/s11356-016-7750-6

Google Scholar

[24] Tang. Y, Xu. Y, Qi. C, Li. X, Xing. E, Wang. F, Kan. Z, Wang. C, Tang. J, Zheng. G, Zhang. K, Wang. X, Li. C, Yang. K, Size-Dependent Effect of Cu2O Nanocubes in Electrochemical and Photocatalytic Properties, Journal of Nanoscience and Nanotechnology, 18 (12) (2018) 8282-8288.

DOI: 10.1166/jnn.2018.15879

Google Scholar

[25] Takuya Kojima, Hiroshi Sugimoto, Minoru Fujii, Size-Dependent Photocatalytic Activity of Colloidal Silicon Quantum Dot, The Journal of Physical Chemistry C, 122 (3) (2018), 1874-1880.

DOI: 10.1021/acs.jpcc.7b10967

Google Scholar

[26] Lixiong. Y, Dongdong. Z, Dan. W, Xingang. K, Jianfeng. H, Feifei. W, Yabo. W, Size dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method, Materials Science and Engineering: B, 208 (2016), 15-21.

DOI: 10.1016/j.mseb.2016.02.004

Google Scholar

[27] Nagarajan Padmavathy and Rajagopalan Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study, Science and Technology of Advanced Materials, 9 (2008) 035004 (7pp).

DOI: 10.1088/1468-6996/9/3/035004

Google Scholar

[28] Amna Sirelkhatim, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan, Dasmawati Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Letters, 7(3), (2015), 219-242.

DOI: 10.1007/s40820-015-0040-x

Google Scholar

[29] Lingling Zhang, Yu Li, Xiaoming Liu, Lihua Zhao, Yulong Ding, Malcolm Povey, Daqiang Cang, The properties of ZnO nanofluids and the role of H2O2 in the disinfection activity against Escherichia coli, Water Research, 47 (2013) 4013-4021.

DOI: 10.1016/j.watres.2012.10.054

Google Scholar

[30] Govinda R. Navale, Thripuranthaka M, Dattatray J. Late, and Sandip S. Shinde, Antimicrobial Activity of ZnO Nanoparticles against Pathogenic Bacteria and Fungi, JSM Nanotechnology and Nanomedicine, 3 (2015), 1033.

Google Scholar

[31] Margit Heinlaan, Angela Ivask, Irina Blinova, Henri-Charles Dubourguier, Anne Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71 (7), (2008), 1308-1316.

DOI: 10.1016/j.chemosphere.2007.11.047

Google Scholar

[32] Roberta Brayner, Roselyne Ferrari-Iliou, Nicolas Brivois, Shakib Djediat, Marc F. Benedetti, and Fernand Fievet, Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium, Nano Letters, 6 (4), (2006), 866-870.

DOI: 10.1021/nl052326h

Google Scholar