Novel Approach for Synthesis of Mesoporous γ-AlOOH Powder from Coal-Bearing Kaolinite and its Enhanced Adsorption Performance for Congo Red and Fluoride

Article Preview

Abstract:

Mesoporous boehmite (γ-AlOOH) was synthesized from naturally occurring coal-bearing kaolinite (CBK) by direct sulfuric acid leaching and hydrothermal method to explore a new possible route to the synthesis of product with high value added using the CBK. The Brunauner-Emmett-Teller (BET) surface area and the average crystallite size of the γ-AlOOH powder could be controlled in the range from 6.3 to 192.5 m2 g-1 and from 5.5 to 14.4 nm, respectively, by varying the reaction temperature and reaction time. Owing to its porous structure and high surface area, the synthesized mesoporous γ-AlOOH powder exhibited better adsorption abilities for CR and fluoride in contrast to commercial boehmite, and it only took 20 min to reach removal efficiency of 99.6% for CR and 90.5% for fluoride, when the initial concentration of CR and fluoride was 100 and 10 mg L-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

79-86

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. M. D. Vitorino, A.V. Kovalevsky, J. C. C. Abrantes, J. R. Frade, Hydrothermal synthesis of boehmite in cellular alumina monoliths for catalytic and separation applications, J. Eur. Ceram. Soc. 35 (2015) 3119-125.

DOI: 10.1016/j.jeurceramsoc.2015.04.040

Google Scholar

[2] G. Li, Y. Sun, X. Li, Y. Liu, Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020), RSC Adv. 6 (2016) 11855-62.

DOI: 10.1039/c5ra24595h

Google Scholar

[3] S. P. Dubey, A. D. Dwivedi, M. Sillanp, H. Lee, Y. N. Kwon, C. Lee, Adsorption of As (V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere 169 (2017) 99-106.

DOI: 10.1016/j.chemosphere.2016.11.052

Google Scholar

[4] V. I. Mikhaylov, T. P. Maslennikova, P. V. Krivoshapkin, Characterization and sorption properties of g-AlOOH/a-Fe2O3 composite powders prepared via hydrothermal method, Mater. Chem. Phys. 186 (2017) 612-19.

DOI: 10.1016/j.matchemphys.2016.11.044

Google Scholar

[5] Z. Wu, G. Cravotto, E. C. Gaudino, A. Giacomino, J. Medlock, W. Bonrath, Ultrasonically improved semi-hydrogenation of alkynes to (Z-) alkenes over novel lead-free Pd/Boehmite catalysts, Ultrason. Sonochem. 35 (2017) 664-72.

DOI: 10.1016/j.ultsonch.2016.05.019

Google Scholar

[6] X. Liu, C. Niu, X. Zhen, J. Wang, X. Su, Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red, J. Colloid Interf. Sci. 452 (2015) 116-25.

DOI: 10.1016/j.jcis.2015.04.037

Google Scholar

[7] T. C. Gilberto, P. R. Juan-Carlos, Z. M. Juan, M. Y. Rafael, Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina, Catal. Today 271 (2016) 207-12.

DOI: 10.1016/j.cattod.2015.07.056

Google Scholar

[8] S. M. Kim, Y. J. Lee, K. W. Jun, J. Y. Park, H. S. Potdar, Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite, Mater. Chem. Phys. 104 (2007) 56-61.

DOI: 10.1016/j.matchemphys.2007.02.044

Google Scholar

[9] D. Panias, A. Krestou, Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions, Powder Technol. 175 (2007) 163-73.

DOI: 10.1016/j.powtec.2007.01.028

Google Scholar

[10] C. Belver, M. A. B. Munoz, M. A. Vicente, Chemical activation of a kaolinite under acid and alkaline conditions, Chem. Mater. 14 (2002) 2033−(2043).

DOI: 10.1021/cm0111736

Google Scholar

[11] H. Yang, M. Liu, J. Ouyang, Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin, Appl. Clay Sci. 47 (2010) 438-43.

DOI: 10.1016/j.clay.2009.12.021

Google Scholar

[12] F. Pan, X. Lu, T. Wang, Y. Wang, Z. Zhang, Y. Yan, S. Yang, Synthesis of large-mesoporous g-Al2O3 from coal-series kaolin at room temperature, Mater. Lett. 91 (2013) 136-38.

DOI: 10.1016/j.matlet.2012.09.052

Google Scholar

[13] H. C. Park, Y. B. Lee, S. G. Lee, C. H. Lee, J. K. Kim, S. S. Hong, S. S. Park, Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates, Ceram. Int. 31 (2005) 293–296.

DOI: 10.1016/j.ceramint.2004.05.019

Google Scholar

[14] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.

DOI: 10.1515/iupac.57.0013

Google Scholar

[15] K. Prabhakaran, S. Ananthakumar, C. Pavithran, Gel casting of alumina using boehmite as a binder, J. Eur. Ceram. Soc. 19 (1999) 2875–2881.

DOI: 10.1016/s0955-2219(99)00075-8

Google Scholar