[1]
N. M. D. Vitorino, A.V. Kovalevsky, J. C. C. Abrantes, J. R. Frade, Hydrothermal synthesis of boehmite in cellular alumina monoliths for catalytic and separation applications, J. Eur. Ceram. Soc. 35 (2015) 3119-125.
DOI: 10.1016/j.jeurceramsoc.2015.04.040
Google Scholar
[2]
G. Li, Y. Sun, X. Li, Y. Liu, Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020), RSC Adv. 6 (2016) 11855-62.
DOI: 10.1039/c5ra24595h
Google Scholar
[3]
S. P. Dubey, A. D. Dwivedi, M. Sillanp, H. Lee, Y. N. Kwon, C. Lee, Adsorption of As (V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere 169 (2017) 99-106.
DOI: 10.1016/j.chemosphere.2016.11.052
Google Scholar
[4]
V. I. Mikhaylov, T. P. Maslennikova, P. V. Krivoshapkin, Characterization and sorption properties of g-AlOOH/a-Fe2O3 composite powders prepared via hydrothermal method, Mater. Chem. Phys. 186 (2017) 612-19.
DOI: 10.1016/j.matchemphys.2016.11.044
Google Scholar
[5]
Z. Wu, G. Cravotto, E. C. Gaudino, A. Giacomino, J. Medlock, W. Bonrath, Ultrasonically improved semi-hydrogenation of alkynes to (Z-) alkenes over novel lead-free Pd/Boehmite catalysts, Ultrason. Sonochem. 35 (2017) 664-72.
DOI: 10.1016/j.ultsonch.2016.05.019
Google Scholar
[6]
X. Liu, C. Niu, X. Zhen, J. Wang, X. Su, Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red, J. Colloid Interf. Sci. 452 (2015) 116-25.
DOI: 10.1016/j.jcis.2015.04.037
Google Scholar
[7]
T. C. Gilberto, P. R. Juan-Carlos, Z. M. Juan, M. Y. Rafael, Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina, Catal. Today 271 (2016) 207-12.
DOI: 10.1016/j.cattod.2015.07.056
Google Scholar
[8]
S. M. Kim, Y. J. Lee, K. W. Jun, J. Y. Park, H. S. Potdar, Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite, Mater. Chem. Phys. 104 (2007) 56-61.
DOI: 10.1016/j.matchemphys.2007.02.044
Google Scholar
[9]
D. Panias, A. Krestou, Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions, Powder Technol. 175 (2007) 163-73.
DOI: 10.1016/j.powtec.2007.01.028
Google Scholar
[10]
C. Belver, M. A. B. Munoz, M. A. Vicente, Chemical activation of a kaolinite under acid and alkaline conditions, Chem. Mater. 14 (2002) 2033−(2043).
DOI: 10.1021/cm0111736
Google Scholar
[11]
H. Yang, M. Liu, J. Ouyang, Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin, Appl. Clay Sci. 47 (2010) 438-43.
DOI: 10.1016/j.clay.2009.12.021
Google Scholar
[12]
F. Pan, X. Lu, T. Wang, Y. Wang, Z. Zhang, Y. Yan, S. Yang, Synthesis of large-mesoporous g-Al2O3 from coal-series kaolin at room temperature, Mater. Lett. 91 (2013) 136-38.
DOI: 10.1016/j.matlet.2012.09.052
Google Scholar
[13]
H. C. Park, Y. B. Lee, S. G. Lee, C. H. Lee, J. K. Kim, S. S. Hong, S. S. Park, Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates, Ceram. Int. 31 (2005) 293–296.
DOI: 10.1016/j.ceramint.2004.05.019
Google Scholar
[14]
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.
DOI: 10.1515/iupac.57.0013
Google Scholar
[15]
K. Prabhakaran, S. Ananthakumar, C. Pavithran, Gel casting of alumina using boehmite as a binder, J. Eur. Ceram. Soc. 19 (1999) 2875–2881.
DOI: 10.1016/s0955-2219(99)00075-8
Google Scholar