Density Functional Theory Study of the Energy Landscapes for the Channeling of Li in LiFePO4

Article Preview

Abstract:

By adopting the first-principles calculation based on density functional theory (DFT), the diffuse pattern and the energy landscape for Li transfer in the LiFePO4 are investigated for the three different directions. The results of relaxed structure are compared with those of the non-relaxed structure and the energy barriers are significantly reduced and the effect of structure relaxation is most obvious for Li displacement along [100] direction. Energy barrier for the Li diffusion along [010] direction is lower than the other two direction in both calculation which indicates that the Li diffusion in LiFePO4 is one dimensional.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

98-103

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Electro-chem. Soc. 144 (1997) 1188.

DOI: 10.1149/1.1837571

Google Scholar

[2] J. Chen, M.S. Whittingham, Hydrothermal Synthesis of Lithium Iron Phosphate, Electrochem. Commun. 8 (2006) 855.

Google Scholar

[3] H. Huang, S.-C. Yin, L.F. Nazar, Approaching Theoretical capacity of LiFePO4 at Room Temperature at High Rates, Electrochem. Solid-State Lett. 4 (2001) A170.

DOI: 10.1149/1.1396695

Google Scholar

[4] S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Electronically conductive Phospho-olivines as lithium storage electrodes, Nature Mater. 1 (2002) 123.

DOI: 10.1038/nmat732

Google Scholar

[5] H.C. Wu, C.Y. Su, D.T. Shieh, M.H. Yang, N.L. Wu, Enhanced High-temperature cycle life of LiFePO4- based li-ion batteries by vinylene Carbonate as Electrolyte additive, Electrochem. Solid-State Lett. 9 (2006) A537.

DOI: 10.1149/1.2351954

Google Scholar

[6] H.H. Chang, C.C. Chang, H.C. Wu, Z.Z. Guo, M.H. Yang, Y.P. Chiang, H.S. Sheu, N.L. Wu, J. Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction, Power Sources 158 (2006) 550.

DOI: 10.1016/j.jpowsour.2005.09.005

Google Scholar

[7] T. Maxisch and G. Ceder, Elastic properties of olivine LixFePO4 from first principles, Phys. Rev. B 73, 174112 (2006).

Google Scholar

[8] C. Zhu, Size Effects on Lithium Storage and Phase Transition in LiFePO4 /FePO4 System, Doctor of Philosophy (Max-Planck-Institut fuer Festkoerperforschung Stuttgart, Germany, 2013).

Google Scholar

[9] D. Morgan, A. Van der Ven, and G. Ceder, Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett.7, A30 (2004).

DOI: 10.1149/1.1633511

Google Scholar

[10] Chuying Ouyang, Siqi Shi, Zhaoxiang Wang, Xuejie Huang and Liquan Chen, First-principles study of Li ion diffusion in LiFePO4, Phys. Rev. B 69, 104303~(2004).

Google Scholar

[11] L. Wang, F. Zhou, Y. S. Meng, and G. Ceder First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential, Phys. Rev. B 76, 165435 (2007).

DOI: 10.1103/physrevb.76.165435

Google Scholar

[12] Hao-Hsun Chang, Chun-Chih hang Hung-Chun Wu, Mo-Hua Yang Hwo-Shuenn Sheu , Nae-Lih Wu, Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode, Electrochem. Commun. 10 (2008) 335-339.

DOI: 10.1016/j.elecom.2007.12.024

Google Scholar

[13] Guigui Xu, Kehua Zhong, Jian-Min Zhang, Zhi-Gao Huang, First-principles study of structural, electronic and Li-ion diffusion properties of N-doped LiFePO4 (010) surface, Solid State Ionics Volume 281, 15 November 2015, Pages 1-5.

DOI: 10.1016/j.ssi.2015.08.013

Google Scholar

[14] P Blaha, K Schwarz, G Madsen, D Kvasnicka and J luitz, WIEN2k User's Guide Vienna University of Technology (June 2013).

Google Scholar

[15] Robert G. Parr. and Yang W. Hao, Density – Functional Theory of Atoms, Oxford University Press, (1989).

Google Scholar

[16] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865-3868 (Oct. 1996).

DOI: 10.1103/physrevlett.77.3865

Google Scholar