Magnetism and Mechanical Properties of Mn1.28Fe0.67P0.48Si0.52 / Cu Composites

Article Preview

Abstract:

This paper reports the effect of Cu doping in first order phase transition material Mn1.28Fe0.67P0.48Si0.52 on its phase structure, magnetocaloric effect and mechanical properties. The results of XRD, SEM and EDS analysis show that the Mn1.28Fe0.67P0.48Si0.52 in this composite forms Fe2P hexagonal structure and the space group is P-62m;Most of Cu exists as a simple substance, and a small amount of Cu and Mn form a solid solution. When the mass ratio of Cu reaches 10:4, the (Mn,Fe)3Si phase appears in Mn1.28Fe0.67P0.48Si0.52. The magnetic measurement results show that the saturation magnetization of Mn1.28Fe0.67P0.48Si0.52 after Cu doping has no obvious change, the Curie temperature decreases, and the thermal hysteresis increases. The maximum magnetic entropy change becomes smaller as the Cu content increases. Under a 1.5 T external magnetic field, the maximum magnetic entropy ΔSm of the composite decreases rapidly from 11 J/kg·K at x = 0 to 4 J/kg·K at x = 5,the half width of the magnetic entropy change gradually increases. The Vickers hardness of the composite is reduced, the compressive strength has been greatly improved, and the mechanical properties have been significantly enhanced after Cu doping.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 288)

Pages:

104-112

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.V. Thang, X.F. Miao, N.H.V. Dijk, et al. Structural and magnetocaloric properties of (Mn,Fe)2(P,Si) materials with added nitrogen[J]. J. Alloy. Compd., 2016, 670, 123-127.

DOI: 10.1016/j.jallcom.2016.02.014

Google Scholar

[2] J. Tusek, S. Zupan, Zupan, et al. Magnetic cooling-development of magnetic refrigerator[J]. Stroj. Vestn-J Mech E, 2009, 55(5), 293-302.

Google Scholar

[3] G.V. Brown. Magnetic heat pumping near room temperature[J]. J. Appl. Phys., 1976, 47(8), 3673-3680.

Google Scholar

[4] J.W. Cable, E.O. Wollan. Neutron diffraction study of the magnetic behavior of gadolinium[J]. Phys. Rev., 1968, 165(2), 733-734.

DOI: 10.1103/physrev.165.733

Google Scholar

[5] S.A. Nikitin, A.S. Andreenko, N.P. Arutyunyan, et al. Spin reorientation in a magnetic field parallel to the difficult magnetization axis in terbium-gadolinium alloys[J]. Sov. Phys. -Solid State (Engl. Transl.); (United States), 1978, 20:12.

Google Scholar

[6] H. Wada, Y. Tanabe. Giant magnetocaloric effect of MnAs1-xSbx[J]. Appl. Phys. Lett., 2001, 79(20), 3302-3304.

DOI: 10.1063/1.1419048

Google Scholar

[7] H. Wada, T. Morikawa, K. Taniguchi, et al. Giant magnetocaloric effect of MnAs1− xSb x, in the vicinity of first-order magnetic transition[J]. Physica. B, 2003, 328(1–2), 114-116.

DOI: 10.1016/s0921-4526(02)01822-7

Google Scholar

[8] J. Liu, T. Gottschall, K.P. Skokov, et al. Giant magnetocaloric effect driven by structural transitions[J]. Nature Mater., 2012, 11(7), 620.

DOI: 10.1038/nmat3334

Google Scholar

[9] Hu Fengxia, Shen Baogen, Sun Jirong, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Appl. Phys. Lett., 2001, 78(23), 3675-3677.

DOI: 10.1063/1.1375836

Google Scholar

[10] S. Fujieda, A. Fujita, K. Fukamichi. Large magnetocaloric effect in La(FexSi1-x)13 itinerant-electron metamagnetic compounds [J] . Appl. Phys. Lett., 2002, 81(7), 1276-1278.

DOI: 10.1063/1.1498148

Google Scholar

[11] O. Tegus, E. Brück, K.H.J. Buschow, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415, 150-153.

DOI: 10.1038/415150a

Google Scholar

[12] O. Tegus, E. Brück, W. Dagula, et al. Magnetoresistance of MnFeP0.55As0.45[J]. IEEE T. Magn., 2002, 38(5), 2753-2754.

Google Scholar

[13] L. Zhang. Unusual magnetic behavior of some rare-earth and manganese compounds[D]. University of Amsterdam: Amsterdam, (2005).

Google Scholar

[14] O. Tegus, B. Fuquan, W. Dagula, et al. Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3–x Gex[J]. J. Alloy. Compd., 2005, 36(36), 6-9.

Google Scholar

[15] W. Dagula, O. Tegus, B. Fuquan, et al. Magnetic entropy change in Mn1.1Fe0.9P1-xGex compounds[C]. IEEE T. Magn., 2005, 1805-1806.

Google Scholar

[16] D.T.C. Thanh, E. Brück, et al. Structure, magnetism and magnetocaloric properties of MnFeP1-xSix [J]. J. Appl. Phys., 2008, 103, 07B318.

DOI: 10.1063/1.2836958

Google Scholar

[17] O. Hascholu, S. Zhiqiang, L. Yujiang, et al. Magnetocaloric effect In Mn1.28Fe0.67P1-xSix compounds [J]. Journal of Inner Mongolia Normal University; Natural Science Edition, 2012, 41(1), 42-45. (in Chinese).

Google Scholar

[18] G. Yaoxiang,O. Tegus, T. N. Trung, et al. Magnetocaloric properties of Mn2-xFexP0.51Si0.49 [R] . Baotou: Fourth international conference on magnetic refrigeration at room temperature, 2010, 213-217.

Google Scholar

[19] N.V. Thang, D. Nhv, E. Brück, et al. Tuneable giant magnetocaloric effect in (Mn,Fe)₂(P,Si) materials by Co-B and Ni-B Co-doping.[J]. Materials, 2017, 10(1), 14.

DOI: 10.3390/ma10010014

Google Scholar

[20] F. Guillou, H. Yibole, N.H.V. Dijk, et al. About the mechanical stability of MnFe(P,Si,B) giant magnetocaloric materials[J]. J. Alloy. Compd., 2014, 617, 569–574.

DOI: 10.1016/j.jallcom.2014.08.061

Google Scholar

[21] Mingming, M. Shuang, W. Haschaolu, et al. Ab initio study on mechanical properties of hexagonal MnFeP1-xSix( 0.33 <x< 0.66 ) compounds. Inner Mongolia Normal University; Natural Science Edition. 2016, 45(3), 327-332. (in Chinese).

Google Scholar

[22] S. Hairong, O. Hascholu, W. Quanjing, et al. Specific heat and phase transition in Mn2-xFexP0.51Si0.49 compounds [J]. Rare. Metal. Mat. Eng., 2012, 41(9):600-602. (in Chinese).

Google Scholar