[1]
P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Carbon nanotubes : nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141 (1999) 201–209.
DOI: 10.1016/s0169-4332(98)00506-6
Google Scholar
[2]
V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, and M.V. Shalaev, Broadband Transformation Optics Devices, Materials. 3 (2010) 4793–4810.
DOI: 10.3390/ma3104793
Google Scholar
[3]
C. Wang, X. Wang, S.W. Anderson, and X. Zhang, Biocompatible, micro and nano fabricated magnetic cylinders for potential use as contrast agents for magnetic resonance imaging, Sensors Actuators B Chem. 196 (2014) 670–675.
DOI: 10.1016/j.snb.2014.01.096
Google Scholar
[4]
L. Li, X. Zhang, J. Qiu, B.L. Weeks, and S. Wang, Reduced graphene oxide-linked stacked polymer forests for high energy-density supercapacitor, Nano Energy. 5 (2013) 628–635.
DOI: 10.1016/j.nanoen.2013.07.011
Google Scholar
[5]
D.B. Chrisey and G.K. Hubler, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, New York, (1994).
Google Scholar
[6]
P. W. Peacock and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides, J. Appl. Phys. 92 (2002) 4712.
DOI: 10.1063/1.1506388
Google Scholar
[7]
J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, Journal of Vacuum Science and Technology B. 18 (2000) 1785–1791.
DOI: 10.1116/1.591472
Google Scholar
[8]
C. Cibert, H. Hidalgo, C. Champeaux, P. Tristant, C. Tixier, J. Desmaison, and A. Catherinot, Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition, Thin Solid Films. 516 (2008) 1290–1296.
DOI: 10.1016/j.tsf.2007.05.064
Google Scholar
[9]
G. Balakrishnan, S. Tripura Sundari, R. Ramaseshan, R. Thirumurugesan, E. Mohandas, D. Sastikumar, P. Kuppusami, T. G. Kim, and J. I. Song, Effect of substrate temperature on microstructure and optical properties of nanocrystalline alumina thin films, Ceram. Int. 39 (2013) 9017–9023.
DOI: 10.1016/j.ceramint.2013.04.104
Google Scholar
[10]
R. Rusdi, N. Kamarulzaman, N. Kamarudin, A.A. Rahman and N.S. Mohamed, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures, Powder Technol. 210 (2011) 18–22.
DOI: 10.1016/j.powtec.2011.02.005
Google Scholar
[11]
S. Pearton, Recent progress in processing and properties of ZnO, Prog. Mater. Sci. 50 (2005) 293–340.
Google Scholar
[12]
D. Tahir, H.L. Kwon, H.C. Shin, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee, and S. Tougaard, Electronic and optical properties of Al2O3/SiO2 thin films grown on Si substrate, J. Phys. D. Appl. Phys. 43 (2010)255301.
DOI: 10.1088/0022-3727/43/25/255301
Google Scholar
[13]
P. Amézaga-Madrid, A. Hurtado-Macías, W. Antúnez-Flores, F. Estrada-Ortiz, P. Pizá-Ruiz, and M. Miki-Yoshida, Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films, J. Alloys Compd. 536 (2012) S412–S417.
DOI: 10.1016/j.jallcom.2011.11.111
Google Scholar
[14]
S. Sonmezoglu, A. Arslan, T. Serin, N. Serin, The effects of film thickness on the optical properties of TiO2–SnO2 compound thin films, Phys. Scr. 84 (2011) 065602.
DOI: 10.1088/0031-8949/84/06/065602
Google Scholar
[15]
N. Kamarulzaman, N. Badar, N.F. Chayed and M.F. Kasim, Band gap widening and quantum tunnelling effects of Ag/MgO/p-Si MOS structure, Mater. Res. Express. 3 (2016) 106401.
DOI: 10.1088/2053-1591/3/10/106401
Google Scholar