Comparative Study of Gas Ratio on Indium Nitride Thin Films Grown on Flexible Substrates Prepared by Reactive Sputtering Method

Article Preview

Abstract:

In this report, indium nitride (InN) thin films were deposited on kapton polyimide flexible substrate by reactive radio frequency (RF) sputtering method using an indium target in a mixture of Ar and N2 gases. The effects of the Ar:N2 gas ratio on the properties of the deposited InN thin films were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive (EDX) spectroscopy. The XRD revealed that the deposited films composed of polycrystalline wurtzite InN. The FESEM and AFM surface morphologies showed smooth and uniform surface of gas ratio at 60:40 compare to others gas ratio. Overall, the characteristics of the InN thin films were effectively improved with combination the N2:Ar gas ration at 60:40. The results showed that the gas ratio plays an important role in improving the properties of the InN thin films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

142-146

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys, Jpn. J. Appl. Phys. 42 (2003) 2549–2559.

DOI: 10.1143/jjap.42.2549

Google Scholar

[2] Z.Y. Xie, R. Zhang, X. Q. Xiu, B. Liu, L. Li, P. Han, S.L. Gu, Y. Shi, Y.D. Zheng, Growth and characterization of InN thin films on sapphire by MOCVD, Chin. Phys. Lett. 24 (2007) 1004–1006.

Google Scholar

[3] E. Monroy, F. Omnes and F. Calle, Wide bandgap semiconductor ultaviolet photodetectors, Semicond. Sci. Technol., 18 (2003) 33-51.

DOI: 10.1088/0268-1242/18/4/201

Google Scholar

[4] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, Indium nitride (InN): A review on growth, characterization, and properties, J. Appl. Phys. 94 (2003) 2779–2808.

DOI: 10.1063/1.1595135

Google Scholar

[5] J. B McChesney, P. M. Bridenbaugh, P.B. O'Connor, Thermal stability of indium nitride elevated temperature andnitrogen pressure, Mater. Res. Bull. 5 (1970) 783-792.

Google Scholar

[6] X.H. Ji, S. P. Lau, H.Y. Yang, Q. Y. Zhang, Structural and optical properties of wrzite InN Grown on Si(111),, Thin Solid Films 515 (2007) 4619-4623.

DOI: 10.1016/j.tsf.2006.11.046

Google Scholar

[7] S. Y. Kuo, W.C. Chen, J. F. Yang, C. N. Hsiao, F. I. Lai, Morphology evolution of nano-structured InN grown by MOMBE, J. Mater. Sci.: Mater. Electron. 26 (2015) 4285-4289.

DOI: 10.1007/s10854-015-2980-9

Google Scholar

[8] H. Xiao, X. Wang, J. Wang, N. Zhang,H. Liu, Y. Zheng, Growth and charcterization of InN on sapphire substrate by RF-MBE, J. Cryst. Growth 276 (2005) 401-403.

DOI: 10.1016/j.jcrysgro.2004.12.001

Google Scholar

[9] W. C. Chen, S.Y. Kuo, Study of high quality indium nitride films grown on Si (100) Substrate by RF-MOMBE with GZO and AlN buffer lyers, J. Nanometer. 2012 (2012) 853021.

DOI: 10.1155/2012/853021

Google Scholar

[10] S. Ruffenach, M. Moret, O. Briot, and B. Gil, Recent advances in the MOVPE growth of Indium nitride, Phys. Status Solidi. 18 (2010) 9–18.

DOI: 10.1002/pssa.200982642

Google Scholar

[11] P. Singha, P. Ruterana, M. Morales, F. Goubilleau, M.Wojdak, J.F. Carlin, M. Ilegems, D. Chateigner, Structural and optical characterization of InN layers grown by MOCVD, Superlattice Microst. 36 (2004) 537-545.

DOI: 10.1016/j.spmi.2004.10.002

Google Scholar

[12] V. Ganesh, M. Alizadeh, A. Shuhaimi, A. Pandikumar, B.T. Goh, N.M. Huang, S.A. Rahman, Investigation of the electrochemical behavior of indium nitride thin films by plasma-assisted reactive evaporation, RSC Adv. 5 (2015) 17325–17335.

DOI: 10.1039/c4ra16258g

Google Scholar

[13] M. Amirhoseiny, Z. Hassan, S. S. Ng, Fabrication of Heterostructure InN/photo- electrochemical Etched Silicon (110), Int. J. Electrochem. Sci., 8 (2013) 5042 – 5051.

Google Scholar

[14] Dupont, Kapton properties, Int. Immunol. 26 (2014) 1-25.

Google Scholar

[15] Q. Guo, N. Shingai, Y. Mitsuishi, M. Nishio, and H. Ogawa, Effects of nitrogen/argon ratio on composition and structure of InNfilms prepared by r.f.magnetron sputtering, Thin Solid Films. 1-2 (1999) 524-527.

DOI: 10.1016/s0040-6090(98)01671-x

Google Scholar

[16] J. Li, S. Wu, and J. Kang, ZnO films deposited by RF magnetron sputtering, Proceedings of the 13th IEEE Semi- conducting and Semi-Insulating Materials Conference (SIMC '04), 9 (2004) 77–80.

DOI: 10.1109/sim.2005.1511390

Google Scholar

[17] K. S. a Butcher, M. Wintrebert-Fouquet, P. P. T. Chen, T. L. Tansley, H. Dou, S. K. Shrestha, H. Timmers, M. Kuball, K. E. Prince, and J. E. Bradby, Nitrogen-rich indium nitride, J. Appl. Phys. 95 (2004) 6124–6128.

DOI: 10.1063/1.1711173

Google Scholar

[18] T. Takeichi, Y. Eguchi, Y. Kaburagi, Y. Hishiyama, and M. Inagaki, Carbonization and graphitization of Kapton-type polyimide films prepared from polyamide alkyl ester, Carbon N. Y. 36 (1998) 117–122.

DOI: 10.1016/s0008-6223(97)00155-3

Google Scholar

[19] X. Pang, L. Zhang, H.Yang, Residual stress and surface energy of sputtered TiN films Materials Engineering and Performance, 24 (2015) 1185-1191.

DOI: 10.1007/s11665-015-1393-5

Google Scholar