Effect of the Sulfate Concentration on the Graphene Film Produced by Electrochemical Exfoliation

Article Preview

Abstract:

Studies and production of anodic exfoliated graphene have been blossoming exponentially to meet the high demand for next generation optoelectronics devices. In this study, the effect of sulfate concentration on the graphene film is presented. The electrochemical exfoliation was conducted using a simple two-electrode system to study on the morphological and optical properties of graphene films using Atomic Force Microscope (AFM), Raman Spectroscopy and Ultraviolet–Visible (UV-Vis) spectrophotometer. Preliminary results show the presence of few layers graphene with nanometer-scale lateral dimension. The study suggests an alternative solution for the large-scale manufacturing capabilities of graphene is feasible

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

127-133

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov and A. K. Geim, Reviews of Modern physics 81 (1), 109 (2009).

Google Scholar

[2] S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang and L. Shi, ACS Nano 5 (1), 321-328 (2010).

Google Scholar

[3] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin and R. S. Ruoff, Nature Materials 11 (3) (2012).

Google Scholar

[4] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, Science 347 (6217), 1246501 (2015).

DOI: 10.1126/science.1246501

Google Scholar

[5] R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nature Materials 14 (3), 271 (2015).

Google Scholar

[6] A. K. Geim and K. S. Novoselov, Nature Materials 6 (3), 183 (2007).

Google Scholar

[7] M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, ACS Nano 4 (6), 3155-3162 (2010).

Google Scholar

[8] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas and A. Mariani, Journal of Materials Chemistry 21 (10), 3428-3431 (2011).

DOI: 10.1039/c0jm02461a

Google Scholar

[9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45 (7), 1558-1565 (2007).

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[10] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, Journal of the American Chemical Society 133 (9), 2816-2819 (2011).

DOI: 10.1021/ja109793s

Google Scholar

[11] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, Advanced Functional Materials 18 (10), 1518-1525 (2008).

Google Scholar

[12] J. Wang, K. K. Manga, Q. Bao and K. P. Loh, Journal of the American Chemical Society 133 (23), 8888-8891 (2011).

Google Scholar

[13] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne and Y. K. Gun'Ko, Nature Nanotechnology 3 (9), 563-568 (2008).

Google Scholar

[14] W. Wu, C. Zhang and S. Hou, Journal of Materials Science 52 (18), 10649-10660 (2017).

Google Scholar

[15] S.-Y. Gu, C.-T. Hsieh, J.-Y. Yuan, J.-H. Hsueh and Y. A. Gandomi, Diamond and Related Materials 87, 99-106 (2018).

Google Scholar

[16] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov and L.-J. Li, ACS Nano 5 (3), 2332-2339 (2011).

Google Scholar

[17] J. Liu, C. K. Poh, D. Zhan, L. Lai, S. H. Lim, L. Wang, X. Liu, N. G. Sahoo, C. Li and Z. Shen, Nano Energy 2 (3), 377-386 (2013).

Google Scholar

[18] C.-T. Hsieh and J.-H. Hsueh, Rsc Advances 6 (69), 64826-64831 (2016).

Google Scholar

[19] W. Lu, S. Liu, X. Qin, L. Wang, J. Tian, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, Journal of Materials Chemistry 22 (18), 8775-8777 (2012).

Google Scholar

[20] S. Yang, S. Brüller, Z.-S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng and K. Müllen, Journal of the American Chemical Society 137 (43), 13927-13932 (2015).

DOI: 10.1021/jacs.5b09000

Google Scholar

[21] A. Ambrosi, C. K. Chua, N. M. Latiff, A. H. Loo, C. H. A. Wong, A. Bonanni and M. Pumera, Chemical Society Reviews 45 (9), 2458-2493 (2016).

DOI: 10.1039/c6cs00136j

Google Scholar

[22] K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng and K. Müllen, Journal of the American Chemical Society 136 (16), 6083-6091 (2014).

Google Scholar

[23] J. M. D'Arcy, H. D. Tran, A. Z. Stieg, J. K. Gimzewski and R. B. Kaner, Nanoscale 4 (10), 3075-3082 (2012).

Google Scholar

[24] S. J. Wang, Y. Geng, Q. Zheng and J.-K. Kim, Carbon 48 (6), 1815-1823 (2010).

Google Scholar

[25] 25. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang and Y. Fang, Nano Letters 11 (2), 767-771 (2011).

Google Scholar

[26] Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. Paulus, A. J. Hilmer, S. Shimizu and M. S. Strano, Chemistry of Materials 23 (14), 3362-3370 (2011).

DOI: 10.1021/cm201131v

Google Scholar

[27] Z. Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani and V. Palermo, Advanced Functional Materials 23 (37), 4684-4693 (2013).

DOI: 10.1002/adfm.201370188

Google Scholar

[28] A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov and S. Roth, Physical Review Letters 97 (18), 187401 (2006).

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[29] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, Physics Reports 473 (5-6), 51-87 (2009).

DOI: 10.1016/j.physrep.2009.02.003

Google Scholar

[30] A. C. Ferrari and D. M. Basko, Nature Nanotechnology 8 (4), 235-246 (2013).

Google Scholar

[31] L. G. Cançado, A. Jorio, E. M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala and A. Ferrari, Nano Letters 11 (8), 3190-3196 (2011).

DOI: 10.1021/nl201432g

Google Scholar

[32] Y. Hernandez, M. Lotya, V. Nicolosi, F. M. Blighe, S. De, G. Duesberg and J. N. Coleman, arXiv preprint arXiv:0809.2690 (2008).

Google Scholar

[33] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Letters 10 (3), 751 (2010).

DOI: 10.1021/nl904286r

Google Scholar

[34] G. Eda, G. Fanchini and M. Chhowalla, (2008).

Google Scholar

[35] S. H. Kim, Y. Yu, Y. Z. Li, T. Xu and J. F. Zhi, Journal of Materials Chemistry 22 (35), 18306-18313 (2012).

Google Scholar

[36] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen and K.-H. Chen, Nanotechnology 21 (46), 465705 (2010).

Google Scholar