Effect Grinding of Graphite on Structural and Morphological Characteristics of Carbon Nanotubes Grown by Microwave Oven

Article Preview

Abstract:

The influence of graphite grinding time on the formation of carbon nanotubes (CNTs), is investigated. Graphite with different grinding time is used for the growth of CNTs by a cost-effective method using a microwave oven. The samples produced using the different grinding time contain nanotubes with an average diameter in the range 31–50 nm as observed by field emission scanning electron microscopy (FESEM). The lowest intensity ratio of D and G bands (ID/IG) and full width at half maximum of G as identified by Raman spectroscopy for grinding time 20 minute indicates the improved crystallinity of CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

122-126

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dalton, A.B., S. Collins, E. Muñoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, and R.H. Baughman, Super-tough carbon-nanotube fibres. Nature, 2003. 423(6941): pp.703-703.

DOI: 10.1038/423703a

Google Scholar

[2] Trojanowicz, M., Analytical applications of carbon nanotubes: a review. TrAC trends in analytical chemistry, 2006. 25(5): pp.480-489.

DOI: 10.1016/j.trac.2005.11.008

Google Scholar

[3] Prasek, J., J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, Methods for carbon nanotubes synthesis—review. Journal of Materials Chemistry, 2011. 21(40): pp.15872-15884.

DOI: 10.1039/c1jm12254a

Google Scholar

[4] Jones, D., T. Lelyveld, S. Mavrofidis, S. Kingman, and N. Miles, Microwave heating applications in environmental engineering—a review. Resources, conservation and recycling, 2002. 34(2): pp.75-90.

DOI: 10.1016/s0921-3449(01)00088-x

Google Scholar

[5] Liu, Z., J. Wang, V. Kushvaha, S. Poyraz, H. Tippur, S. Park, M. Kim, Y. Liu, J. Bar, and H. Chen, Poptube approach for ultrafast carbon nanotube growth. Chemical Communications, 2011. 47(35): pp.9912-9914.

DOI: 10.1039/c1cc13359d

Google Scholar

[6] Algadri, N.A., K. Ibrahim, Z. Hassan, and M. Bououdina, Cost-effective single-step carbon nanotube synthesis using microwave oven. Materials Research Express, 2017. 4(8).

DOI: 10.1088/2053-1591/aa817b

Google Scholar

[7] Shajahan, M., Y. Mo, A.F. Kibria, M. Kim, and K. Nahm, High growth of SWNTs and MWNTs from C 2 H 2 decomposition over Co–Mo/MgO catalysts. Carbon, 2004. 42(11): pp.2245-2253.

DOI: 10.1016/j.carbon.2004.04.038

Google Scholar

[8] Antunes, E., A. Lobo, E. Corat, and V. Trava-Airoldi, Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon, 2007. 45(5): pp.913-921.

DOI: 10.1016/j.carbon.2007.01.003

Google Scholar

[9] Singh, D.K., P. Iyer, and P. Giri, Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diamond and Related Materials, 2010. 19(10): pp.1281-1288.

DOI: 10.1016/j.diamond.2010.06.003

Google Scholar

[10] Ebbesen, T. and T. Takada, Topological and sp 3 defect structures in nanotubes. Carbon, 1995. 33(7): pp.973-978.

DOI: 10.1016/0008-6223(95)00025-9

Google Scholar

[11] Algadri, N.A., Z. Hassan, K. Ibrahim, and M. Bououdina, Effect of ferrocene catalyst particle size on structural and morphological characteristics of carbon nanotubes grown by microwave oven. Journal of Materials Science, 2017. 52(21): pp.12772-12782.

DOI: 10.1007/s10853-017-1381-2

Google Scholar