Fabrication of InxGa1-xN/GaN Multi-Quantum well Structure for Green Light Emitting Diode on Patterned Sapphire Substrate by Metal Organic Chemical Vapour Deposition

Article Preview

Abstract:

Abstract. In an effort to successfully fabricate InGaN-based for green emitting devices on patterned sapphire substrate, the indium composition in InxGa1-xN/GaN multi-quantum well structure is crucial because lower indium composition will shift the wavelength towards ultraviolet region. In this study, 5 micrometre of undoped GaN epilayer was deposited as a buffer layer prior to the growth structure. 6 pairs of InGaN/GaN multi-quantum well structure grown by metal organic chemical vapour deposition (MOCVD). In this research, the indium to gallium composition ratio was 9:1. The crystal and optical properties of the samples were characterized using field effect atomic force microscopy, high resolution x-ray diffraction, and photoluminescence spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

147-152

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Green Light-Emitting Diode Makes Highly Efficient White Light, NREL, US Dept of Energy.

DOI: 10.2172/983724

Google Scholar

[2] S. Nakamura Microelectronics Journal Vol 25 (1994) 651-659.

Google Scholar

[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada Applied Physics Letter Vol 67 (1995) 1868-1870.

Google Scholar

[4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada Applied Physics Letter Vol 68 (1996) 3269-3271.

Google Scholar

[5] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Japanese Journal of Applied Physics Vol 31 (1992) 139-142.

Google Scholar

[6] G. Linti, The Group 13 Metals Aluminium, Gallium, Indium and Thallium. Chemical Patterns and Peculiarities, Wiley.

DOI: 10.1002/9780470976548.ins

Google Scholar

[7] Kwanjae Lee, C.R. Lee, T.H. Chung, J. Park, J.Y. Leem, K.U. Jeong, J.S. Kim Journal of Crystal Growth Vol 464 (2017) 138-142.

Google Scholar

[8] Nakamura Sciencemag Vol 281 (1998) 956-961.

Google Scholar

[9] M. Raposo, Q. Ferrreira, P. Rebeiro, FORMATEX (2007) 758-769.

Google Scholar

[10] J.C. Chang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, H. Yang Journal of Crystal Growth Vol 268 (2004) 24-29.

Google Scholar

[11] O Reentila, F. Brunner, A. Knauer, A. Mogilatenko, W. Neumann, H. Protsmann, M.Heuken, M. Kneissel, M. Weyers, G.Trankle Journal of Crystal Growth Vol 310 (2008) 4932-4934.

DOI: 10.1016/j.jcrysgro.2008.07.083

Google Scholar