Effect of Ag NPs: Ultrasonics Attenuation Properties

Article Preview

Abstract:

Silver nanoparticles (Ag NPs) are embedded in Er3+/Nd3+ co-doped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1,2 and 3 mol% via conventional melt-quenching technique. The ultrasonic attenuation shows the rate of sound energy reduction when an ultrasonic wave is propagating in a medium which is the lithium niobate tellurite glasses. The glass attenuation depends on the grain size, viscous friction, crystal structure, porosity and hardness. The existence of Ag NPs with an average size of 3.7 nm is confirmed using TEM analysis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

93-98

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Berke, U. Hoppenkamps, Nondestructive Material Testing with Ultrasonics (3rd Ed.). Krautkrämer Training System Level 1 (1990).

Google Scholar

[2] S.M. Chung, The Interactions of Ultrasonic Rayleigh Waves with Surface Discontinuities in Steel, Iowa State University: PhD Thesis (1984).

Google Scholar

[3] M. Bernard, Ultrasonic Surface Crack Characterization Using Rayleigh Waves, Swiss Federal Institue of Technology Zurich: PhD Thesis (2006).

Google Scholar

[4] A.F. Kenneth, M.E. Gerry, A.S. Karen, J.N. Thomas, Theory and Application of Precision Ultrasonic Thickness Gaging, Journal of British Institute of Non- Destructive Testing 2(10) (1997).

Google Scholar

[5] D.O. Thompson, D.E. Chimenti, Ultrasonic Measurement of Pipe Thickness, New York: Plenum Press (1993).

Google Scholar

[6] P.P. Nanekar, B.K. Shah, Characterization of Material Properties by Ultrasonics. BARC Newsletter 249 (2003) 25-38.

Google Scholar

[7] L. Robert, The Improvement of Ultrasonic Apparatus for The Routine Inspection of Concrete, Imperial College of Science, Technology and Medicine: PhD Thesis (2000).

Google Scholar

[8] E.O. Serqueira, N.O. Dantas, A.F.G. Monte, M.J.V. Bell, Judd Ofelt Calculation of Quantum Efficiencies and Branching Ratios of Nd3+ Doped Glass, Journal of Non-Crystalline Solids 352 (2006) 3628-3632.

DOI: 10.1016/j.jnoncrysol.2006.03.093

Google Scholar

[9] K. Selvaraju, K. Marimuthu, Structural and Spectroscopic Studies on Concentration Dependent Sm3+ Doped Boro-Tellurite Glasses, Journal of Alloys and Compound 553 (2013) 273-281.

DOI: 10.1016/j.jallcom.2012.11.150

Google Scholar

[10] O. Ravi, C.M. Reddy, L. Manoj, B.D.P. Raju, Structural and Optical Studies of Sm3+ ions Doped Niobium Borotellurite Glasses, Journal of Molecular Structure 1029 (2012) 53-59.

DOI: 10.1016/j.molstruc.2012.06.059

Google Scholar

[11] Z.A.S. Mahraz, M.R. Sahar, S.K. Ghoshal, Enhanced Luminescence from Silver Nanoparticles Integrated Er3+-Doped Boro-Tellurite Glasses: Impact of Annealing Temperature, Journal of Alloys and Compounds 649 (2015) 1102-1109.

DOI: 10.1016/j.jallcom.2015.07.232

Google Scholar

[12] K.V. Raju, C.N. Raju, B.S. Reddy, Judd-Ofelt Analysis and Photoluminescence Properties of RE3+ (RE=Er & Nd): Cadmium Lithium Boro Tellurite Glasses, Solid State Sciences 15 (2013) 102-109.

DOI: 10.1016/j.solidstatesciences.2012.08.011

Google Scholar

[13] Z.A.S. Mahraz, M.R. Sahar, S.K. Ghoshal, M.R. Dousti, Concentration Dependent Luminescence Quenching of Er3+ -Doped Zinc Boro-Tellurite Glass, Journal of Luminescence 144 (2013) 139-145.

DOI: 10.1016/j.jlumin.2013.06.050

Google Scholar

[14] C.E. Alvar, Market Analysis for A Long Range Ultrasonic Inspection Program of The Enterprise Areva, Ansbach University of Applied Science: Master Thesis (2012).

Google Scholar

[15] V.N. Bindal, Water-Based Couplants for General Purpose Use for Ultrasonic NDT Applications, Journal of Scientific & Industrial Research 59 (2000) 935-939.

Google Scholar

[16] J.C. Drury, Ultrasonic Flaw Detection for Technician (4th Ed.), Rawlings Rd, Llandybïe: Salesbury Press (1984).

Google Scholar

[17] S.A.E. Nadia, A.A. Hesham, Structure and Ultrasonic Properties of Vanadium Tellurite Glasses Containing Copper Oxide, Archives of Acoustics 34(4) (2009) 641-654.

Google Scholar

[18] P. Damas, J. Coelho, G. Hungerford, N.S. Hussain, Structural Studies of Lithium Boro Tellurite Glasses doped with Praseodymium and Samarium Oxides, Materials Research Bulletin 47 (2012) 3489-3494.

DOI: 10.1016/j.materresbull.2012.06.071

Google Scholar

[19] B. V. R. Chowdari, P. P. Kumari, Studies on Ag2O, MxOy. TeO2 (MxOy = WO3, MoO3, P2O5 and B2O3) Ionic Conducting Glasses, Solid State Ionics 113-115 (1998) 665-675.

DOI: 10.1016/s0167-2738(98)00393-2

Google Scholar

[20] P. G. Pavani, K. Sadhana, V. C. Mouli, Optical, Physical and Structural Studies of Boro Zinc Tellurite Glasses, Physica B 406 (2011) 1242-1247.

DOI: 10.1016/j.physb.2011.01.006

Google Scholar

[21] V.O. Sokolov, V. G. Plotnichenko, V.V. Koltashev, Structure of Barium Chloride-oxide Tellurite Glasses, Journal of Non-Crystalline Solids 355 (2009) 1574-1584.

DOI: 10.1016/j.jnoncrysol.2009.06.017

Google Scholar

[22] R.Kazys, O. Tumsys, D. Pagodinas, A New Ultrasonic Technique for Detection and Location of Defects in Three-Layer Plastic Pipes with a Reinforced Internal Layer, Ultragarsas (Ultrasound) 63(3) (2008) 19-27.

Google Scholar

[23] Q. Shen, M. Omar, S. Dongri, Ultrasonic NDE Techniques for Impact Damage Inspection on CFRP Laminates, Journal of Materials Science Research 1(1) (2012) 2-16.

DOI: 10.5539/jmsr.v1n1p2

Google Scholar

[24] P.V. Ramakrishna, S.V.N. Pammi, K. Samatha, UV-Visible Upconversion Studies of Nd3+ Ions in Tellurite Glass, Solid State Com. 155 (2013) 21-24.

DOI: 10.1016/j.ssc.2012.10.043

Google Scholar

[25] V. Kamalaker, G. Upender, Ch. Ramesh, V.C. Mouli, Raman Spectroscopy, Thermal and Optical Properties of TeO2-ZnO-Nb2O5-Nd2O3 Glasses, Spectrochimica Acta Part A 89 (2012) 135-140.

DOI: 10.1016/j.saa.2011.12.057

Google Scholar