[1]
Ebrahimi-Najafabadi, H., R. Leardi, and M. Jalali-Heravi, Experimental design in analytical chemistry—Part II: Applications. Journal of AOAC International, 2014. 97(1): pp.12-18.
DOI: 10.5740/jaoacint.sgeebrahimi2
Google Scholar
[2]
Li, F., et al., Dynamic Nanoparticle Assemblies for Biomedical Applications. Advanced Materials, (2017).
Google Scholar
[3]
Kuo, C.-H., et al., Synthesis of highly faceted pentagonal-and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. Langmuir, 2004. 20(18): pp.7820-7824.
DOI: 10.1021/la049172q
Google Scholar
[4]
Hong, S., K.L. Shuford, and S. Park, Shape transformation of gold nanoplates and their surface plasmon characterization: triangular to hexagonal nanoplates. Chemistry of Materials, 2011. 23(8): pp.2011-2013.
DOI: 10.1021/cm103273c
Google Scholar
[5]
Li, K., et al., Shape transformation of Ag nanospheres to triangular Ag nanoplates: Hydrogen peroxide is a magic reagent. Integrated Ferroelectrics, 2016. 169(1): pp.22-28.
DOI: 10.1080/10584587.2016.1162594
Google Scholar
[6]
Navyatha, B., R. Kumar, and S. Nara, A facile method for synthesis of gold nanotubes and their toxicity assessment. Journal of Environmental Chemical Engineering, 2016. 4(1): pp.924-931.
DOI: 10.1016/j.jece.2015.12.033
Google Scholar
[7]
Sasidharan, S., D. Bahadur, and R. Srivastava, Protein-Poly (amino acid) Nanocore–Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer. ACS applied materials & interfaces, 2016. 8(25): pp.15889-15903.
DOI: 10.1021/acsami.6b03428
Google Scholar
[8]
Yoo, Y., et al., Surfactant-Free Vapor-Phase Synthesis of Single-crystalline Gold Nanoplates for Optimally Bioactive Surfaces. Chemistry of Materials, (2017).
DOI: 10.1021/acs.chemmater.7b02932.s001
Google Scholar
[9]
Turkevich, J., P.C. Stevenson, and J. Hillier, The formation of colloidal gold. The Journal of Physical Chemistry, 1953. 57(7): pp.670-673.
DOI: 10.1021/j150508a015
Google Scholar
[10]
Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996. 12(3): pp.788-800.
DOI: 10.1021/la9502711
Google Scholar
[11]
Narayanan, K.B. and N. Sakthivel, Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters, 2008. 62(30): pp.4588-4590.
DOI: 10.1016/j.matlet.2008.08.044
Google Scholar
[12]
Dhas, T.S., et al., Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012. 99: pp.97-101.
DOI: 10.1016/j.saa.2012.09.024
Google Scholar
[13]
Ganaie, S., et al., Biomimetic synthesis of silver nanoparticles using the amphibious weed ipomoea and their application in pollution control. Journal of King Saud University-Science, 2014. 26(3): pp.222-229.
DOI: 10.1016/j.jksus.2014.02.004
Google Scholar
[14]
Shi, Y., et al., Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Scientific reports, 2013. 3.
Google Scholar
[15]
Jia, H., et al., Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate. Thin Solid Films, 2008. 516(15): pp.5004-5009.
DOI: 10.1016/j.tsf.2008.01.024
Google Scholar
[18]
I.A. USMAN, A.A. Aziz, O.A.S.A. NOQTA, Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds' extracts at room temperature, Mater. Res. Express, DOI (2018).
DOI: 10.1088/2053-1591/aaa562
Google Scholar