Anisotropic Behavior of Different Three-Dimensional Structures Materials under Thermal Stress Effect

Article Preview

Abstract:

This work concerns the numerical modeling of stationary conduction heat transfer in a 3D three-dimensional anisotropic material subjected to an internal heat source, based on the finite element method MEF and using the Galerkin method. The field of study is a cube representing the seven crystalline systems subjected to an internal heat source and convective boundaries. The obtained equation system is solved by the LU method. The automatic mesh is managed for all the domain nodes via the program which we have written in FORTRAN language. This program allowed temperature field calculation and was applied for different crystalline systems: monoclinic, triclinic, orthorhombic, trigonal, cubic that are identified by their thermal conductivity tensors [kij]. The obtained temperature profiles obtained are in accordance with heat transfer theory and clearly illustrate the crystalline structure symmetry; this calculation permits to predict the possible thermal deformations in an anisotropic solid.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 297)

Pages:

95-104

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Ducret, Elasticité anisotrope et endommagement des matériaux composites : caractérisation ultrasonore et modélisation micromécanique, Thèse de doctorat, INSA de Lyon, (2000).

DOI: 10.1051/mattech/200088090003

Google Scholar

[2] S. Forest, M. Amestoy, G. Damamme, S. Kruch, V. Maurel, M. Mazière, Mécanique des milieux continus, Ecole des mines de paris, (2009).

Google Scholar

[3] Guido Dhondt, The Finite Element Method for Three-dimensional Thermomechanical Applications, John Wiley & Sons, (2004).

Google Scholar

[4] D. Rochais, Caractérisation et modélisation thermique multi-échelle de matériaux hétérogènes, CEA Le Ripault, JSFT 25-09-09.

Google Scholar

[5] S. Bouzid1, A.C. Boumaaza et M. Afrid, Revue des Energies Renouvelables CISM'08 Oum-El-Bouaghi, (2008) 103 – 111.

Google Scholar

[6] ‏ J‏.F Witz, S. Roux, F. Hild, J.B. Rieunier, Identification de la conductivité anisotrope de laines minérales, ‏19ème Congrès Français de Mécanique, Marseille, 24-28 août (2009).

Google Scholar

[7] H. Belghazi, M. El-Ganaoui, J. C. Labbe, Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, International Journal of Thermal Sciences, 49 (2010) 311–318.

DOI: 10.1016/j.ijthermalsci.2009.06.006

Google Scholar

[8] Su. Shunyu, J. Chen, and C. Zhang, Study on Performance of Anisotropic Materials of Thermal Conductivity, The Open Civil Engineering Journal, 5 (2011) 168-172.

DOI: 10.2174/1874149501105010168

Google Scholar

[9] M. Niezgoda, D. Rochais, , F. Enguehard, B. Rousseau, P. Echegut, Modeling heat transfer within porous multiconstituent materials, Journal of Physics: Conference Series, 369 (2012) 012001.

DOI: 10.1088/1742-6596/369/1/012001

Google Scholar

[10] X.G. Wang, J.F. Witz, A. El-Bartali, P. Dufrénoy, E. Charkaluk, Investigation of grain-scale surface deformation of a pure aluminum polycrystal through kinematic-thermal full-field coupling measurement, 13th International Conference on Fracture June 16–21, 2013, Beijing, China.

Google Scholar

[11] A. R. Hadjes Fandiari, On the symmetric character of the thermal conductivity tensor, International Journal of Materials and Structural Integrity, 8(4), 209, (2014).

Google Scholar

[12] A. Imane, H. Hamid, L. Jawad, Z. Khalid, O. Abdelaziz, Numerical Solution of Unsteady Conduction Heat Transfer in Anisotropic Cylinders, Journal of Thermal Science and Engineering Applications, 8(3), 031013, (2016).

DOI: 10.1115/1.4033467

Google Scholar

[13] J. Larroque, Étude théorique de l'anisotropie du transport thermique dans des nanostructures à base de silicium et de germanium, Science des matériaux [cond-mat.mtrl-sci]. Université Paris-Saclay, (2016).

Google Scholar

[14] J. Zhang, G. Zhou, S. Gong, S. Wang, Transient heat transfer analysis of anisotropic material by using Element Free Galerkin method, International Communications in Heat and Mass Transfer 84 (2017) 134–143.

DOI: 10.1016/j.icheatmasstransfer.2017.04.003

Google Scholar

[15] M. N. OZISIK, Heat conduction, Second ed., John Willey & Sons, INC, New York, (1993).

Google Scholar

[16] H. B. G. Casimir, On Onsager's Principle of Microscopic Reversibility, Reviews of Modern Physics, (1945) 17(2-3), 343–350.

Google Scholar

[17] D. Mainprice, Textures and Microstructures in the Earth Sciences Freiberg, Summer School DFH-UFA, June 29 - July 8, (2005).

Google Scholar

[18] H-A Thoraton Kenneth, The finite element method for engineers, (1982).

Google Scholar

[19] M. R. Eslami, Conduction Heat Transfer in Solids, Solid Mechanics and Its Applications, (2014) 95–117.

Google Scholar

[20] https://www.coursehero.com/file/17849155/9781848829718-c1-1/.

Google Scholar