[1]
Z. Zhang: Mater. China Vol. 35 (2016), 141.
Google Scholar
[2]
M. Ayaz, D.M. Khaki, N.B.M. Arab, A. Noroozi: Int J Mater Res Vol. 104 (2013), 1212-1222.
Google Scholar
[3]
S. Shanmugam, N. Ramisetti, R. Misra, J. Hartmann, S. Jansto: Mater. Sci. Eng., A Vol. 478 (2008), 26-37.
Google Scholar
[4]
J. Zhao, Z. Jiang: Prog. Mater Sci. Vol. 94 (2018), 174-182.
Google Scholar
[5]
M. Cabibbo, A. Fabrizi, M. Merlin, G. Garagnani: J. Mater. Sci. Vol. 43 (2008), 6857.
Google Scholar
[6]
A. Nowotnik, T. Siwecki: J. Microsc. Vol. 237 (2010), 258-262.
Google Scholar
[7]
H. Rahmanifard, T. Plaksina: Artif. Intell. Rev. Vol. (2018), 1-24.
Google Scholar
[8]
P.N. Banu, S.D. Rani: Comput. Mater. Sci. Vol. 149 (2018), 259-266.
Google Scholar
[9]
G. Liu, L. Jia, B. Kong, K. Guan, H. Zhang: Mater. Des. Vol. 129 (2017), 210-218.
Google Scholar
[10]
J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, Z. Jiang: Comput. Mater. Sci. Vol. 92 (2014), 47-56.
Google Scholar
[11]
A. Jenab, I.S. Sarraf, D.E. Green, T. Rahmaan, M.J. Worswick: Mater. Des. Vol. 94 (2016), 262-273.
Google Scholar
[12]
A. Powar, P. Date: Mater. Sci. Eng., A Vol. 628 (2015), 89-97.
Google Scholar
[13]
S. Dey, N. Sultana, M.S. Kaiser, P. Dey, S. Datta: Mater. Des. Vol. 92 (2016), 522-534.
Google Scholar
[14]
K. Guan, L. Jia, X. Chen, J. Weng, F. Ding, H. Zhang: Mater. Sci. Eng., A Vol. 605 (2014), 65-72.
Google Scholar
[15]
G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat: Neural Comput. Appl. Vol. 23 (2013), 2301-2308.
DOI: 10.1007/s00521-012-1182-0
Google Scholar
[16]
T. Azimzadegan, M. Khoeini, M. Etaat, A. Khoshakhlagh: Neural Comput. Appl. Vol. 23 (2013), 1473-1480.
DOI: 10.1007/s00521-012-1097-9
Google Scholar
[17]
J.W. D. M. Jones, K. J. Brown: Ironmaking Steelmaking Vol. 32 (2005), 435-442.
Google Scholar
[18]
M.J. Faizabadi, G. Khalaj, H. Pouraliakbar, M.R. Jandaghi: Neural Comput. Appl. Vol. 25 (2014), 1993-1999.
Google Scholar
[19]
H. Jafari, Z. Jafari: Journal of Bio-and Tribo-Corrosion Vol. 4 (2018), 24.
Google Scholar
[20]
W. Liu, H. Pan, L. Li, H. Lv, Z. Wu, F. Cao, J. Zhu: J. Manuf. Process. Vol. 25 (2017), 418-425.
Google Scholar
[21]
H. Pouraliakbar, M.-j. Khalaj, M. Nazerfakhari, G. Khalaj: J Iron Steel Res Int Vol. 22 (2015), 446-450.
DOI: 10.1016/s1006-706x(15)30025-x
Google Scholar
[22]
R. Dimitriu, H. Bhadeshia, C. Fillon, C. Poloni: Mater. Manuf. Processes Vol. 24 (2008), 10-15.
Google Scholar
[23]
H. Bhadeshia, R. Dimitriu, S. Forsik, J. Pak, J. Ryu: Mater. Sci. Technol. Vol. 25 (2009), 504-510.
Google Scholar
[24]
Ş. Talaş: Mater. Des. Vol. 31 (2010), 2649-2653.
Google Scholar
[25]
Specification API 5L. Specification for line pipe, 44th Edition ed., American Petroleum Institute, (2007).
Google Scholar
[26]
K. Gurney, An introduction to neural networks, CRC press, (2014).
Google Scholar
[27]
S. Soft: Tulsa, OK: Stat Soft Inc Vol. (2013).
Google Scholar
[28]
A. Nazari: Neural Comput. Appl. Vol. 22 (2013), 731-745.
Google Scholar
[29]
B. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah: Mater. Sci. Eng., A Vol. 527 (2010), 1595-1604.
Google Scholar
[30]
M.S. Mohebbi, M. Rezayat, M.H. Parsa, Š. Nagy, M. Nosko: Mater. Sci. Eng., A Vol. 723 (2018), 194-203.
Google Scholar
[31]
Y. Zou, Y. Xu, Z. Hu, X. Gu, F. Peng, X. Tan, S. Chen, D. Han, R. Misra, G. Wang: Mater. Sci. Eng., A Vol. 675 (2016), 153-163.
Google Scholar
[32]
P. Gong, E. Palmiere, W. Rainforth: Acta Mater. Vol. 97 (2015), 392-403.
Google Scholar
[33]
Z. Dai, R. Ding, Z. Yang, C. Zhang, H. Chen: Acta Mater. Vol. 152 (2018), 288-299.
Google Scholar
[34]
Y. Shao, C. Liu, Z. Yan, H. Li, Y. Liu: J. Mater. Sci. Technol. Vol. 34 (2018), 737-744.
Google Scholar
[35]
D.C. Montgomery, G.C. Runger, Applied statistics and probability for engineers, John Wiley & Sons, (2010).
Google Scholar
[36]
Minitab, MINITAB release 17: Statistical software for windows. Minitab Inc, USA, (2014).
Google Scholar