Microstructural Aspects of the Zircaloy-4/SS-304L Interface Obtained by Diffusion Bonding Technique

Article Preview

Abstract:

A dissimilar metal joining method based on diffusion bonding was developed to join 304L stainless steel (SS) and Zr alloy (Zy-4). This was done at 820°C and 950°C under argon and dynamic pressure for 45 minutes.The metallurgical structure of the interface and the evolution of its texture during the treatment were studied by evaluating the distribution of the constituent chemical elements and by identifying the crystalline phases formed. Chemical exchanges through the interface are favored by diffusion phenomena. The junction was characterized by: microscopic observations and chemical analyzes (ESEM-EDS, EPMA), X-RD and mechanical tests (HV and Shear test). Treatment at 820°C does not form a bond because the reciprocal solubilities of the chemical elements of SS and Zy-4 are very low. The junction obtained at 950°C has a reaction zone (RZ) formed at the SS/Zy-4 interface, composed of three layers. The first layer (LI = α-(Fe,Cr) on the SS side and the third layer (LIII=Zr2(Fe, Ni)) on the Zy-4 side are single-phased. The middle layer LII is biphasic (LII= e-Zr(Cr,Fe)2+Zr2(Fe, Ni)). The maximum hardness measured in the RZ is ~ 1120 HV. It is due to the formation of the intermetallic compounds of type e-Zr(Cr,Fe)2 in LII. Examination of fracture facies obtained from the joints reveals that the fracture is localized in the LIII layer and it is fragile in nature of the trans-granular type.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 297)

Pages:

17-30

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Sun, R. Karppi, The application of electron beam welding for the joining of dissimilar materials: an overview, J. Mater. Process. Tech., 59 (3) (1996) 257-267.

DOI: 10.1016/0924-0136(95)02150-7

Google Scholar

[2] A. Joseph, S. K. Rai, T. Jayakumar, N. Murugan, Evaluation of residual stresses in dissimilar weld joints, Int. J. Pres. Ves. Pip., 82 (9) (2005) 700-705.

DOI: 10.1016/j.ijpvp.2005.03.006

Google Scholar

[3] H. Pan, B. Liu, Y. Guo, Y. Liu, G. Quan, An investigation on diffusion bonding of Zircaloy-4 and 304L stainless steel with Ti and Ag multiple interlayers, Materials Letters 240 (4) (2019) 185-188.

DOI: 10.1016/j.matlet.2018.12.099

Google Scholar

[4] K. Bhanumurthy, D. Joyson, S.B. Jawale, A. Laik, and G.K. Dey, Diffusion Bonding of Nuclear Materials, BARC Newsl., 331I (3–4) (2013) 19–25.

Google Scholar

[5] M. Ahmad, J. I. Akhter, M. A. Shaikh, M. Akhtar, M. Iqbal, M. A. Chaudhry, Hardness and microstructural studies of electron beam welded joints of Zircaloy-4 and Stainless steel, J. Nucl. Mater., 301 (2002) 118–121.

DOI: 10.1016/s0022-3115(01)00757-7

Google Scholar

[6] V. Srikanth, A. Laik, G.K. Dey, Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayer's. Materials & Design, 126,15(7)(2017)141-154.

DOI: 10.1016/j.matdes.2017.04.037

Google Scholar

[7] G. Perona, R. Sesini, W. Nicodemi, R. Zoja, Study of Zircaloy-2-Stainless steel diffusion bonds, J. Nucl. Mater., 18 (3) (1966) 278-291.

DOI: 10.1016/0022-3115(66)90169-3

Google Scholar

[8] H. I. Shabban, F. H. Hammad, Investigation of diffusion-bonding between Zircaloy-4 and 304 Stainless steel, J. Nucl. Mater., 71 (2) (1978) 277-285.

DOI: 10.1016/0022-3115(78)90425-7

Google Scholar

[9] Zhou Hairong, Zhou Bangxin, TEM study of microstructure in explosive welded joints between Zircaloy-4 and Stainless steel, CNIC-01108, SINRE-0067(1996).

Google Scholar

[10] E. Ahmed, J.I. Akhter, M. Akhtar, and M. Iqbal, Microstructure and Characterization of Phases in TIG Welded Joints of Zircaloy-4 and Stainless Steel, J. Mater. Sci. Lett., 42 (2007) 328–33.

DOI: 10.1007/s10853-006-1028-1

Google Scholar

[11] E. Brutto, G. Perona, R. Sesini, G. Volta, Diffusion bonding of zircaloy-2 to Steel by swaging, Nucl. Eng. Desi., 3 (1966) 365–368.

DOI: 10.1016/0029-5493(66)90123-3

Google Scholar

[12] N. F. Kazakov, Diffusion Bonding of Materials, Pergamon Press (1985).

Google Scholar

[13] P. M. Bartle, Diffusion bonding as a production process – Information Package Series, The Welding Institute, Cambridge (1979).

Google Scholar

[14] M. Taouinet, S. Lebaili, and N. Souami, Characterization of the Interface to Diffusion Bonding of Zircaloy-4 and Stainless Steel, Phys. Procedia, 2 (2009) 1231–1239.

DOI: 10.1016/j.phpro.2009.11.086

Google Scholar

[15] B. Zaid, M. Taouinet, N. Souami, and S. Lebaili, Microstructure and Corrosion Aspects of Dissimilar Joints of Zircaloy-4 and 304L Stainless Steel, J. Mater. Eng. Perform., 23(3) (2013) 854–862.

DOI: 10.1007/s11665-012-0319-8

Google Scholar

[16] P. Gr. Lucuta, I. Pătruand F. Vaciliu, Microstructural Features of Hot Pressure Bonding Between Stainless Steel Type AISI-304 l and Zircaloy-2, J. Nucl. Mater., 99 (1981) 154–164.

DOI: 10.1016/0022-3115(81)90184-7

Google Scholar

[17] P. Hofmann and M. Markiewicz, Chemical Interactions Between as-Received and Pre-oxidized Zircaloy-4 and Stainless Steel at HighTemperatures, KfK, 5 (1994) 5106.

Google Scholar

[18] M. Taouinet, S. Lebaili et N. Souami, Étude du soudage diffusion entre l'alliage de zirconium Zy4 et l'acier inoxydable 304L. Morphologie de l'interface et nature des phases formées. Matériaux& Techniques 97, 4 (2009) 261-272.

DOI: 10.1051/mattech/2009041

Google Scholar

[19] M. Taouinet, N.E. Kamel, and S. Lebaili, Diffusion Bonding Between Zircaloy-4 and 304L Stainless Steel in the Presence of an Eutectic, Mater. Manuf. Process., 28 (2013) 1327–1334.

DOI: 10.1080/10426914.2013.822982

Google Scholar

[20] A. Lebaili, M. Taouinet, D. Nibou, S. Lebaili, and F. Hodaj. Effect of Isothermal Hold on the Microstructural Evolution of the Stainless Steel 304L/Zircaloy-4 Interface. J. of Mater.Eng.andPerf. 267 (2017) 3112–3120.

DOI: 10.1007/s11665-017-2744-1

Google Scholar

[21] M.M. Atabaki, Microstructural Evolution in the Partial Transient Liquid Phase Diffusion Bonding of Zircaloy-4 to Stainless Steel 321 Using Active Titanium Filler Metal, J. Nucl. Mater., 406 (2010) 330–341.

DOI: 10.1016/j.jnucmat.2010.09.003

Google Scholar

[22] J. I. Akther, Q. Zaman, M. A. Shaikh, M. Akthar, M. Iqbal, E. Ahmed, M. Ahmad, Diffusion bonding of Stainless steel to Zircaloy-4 in the presence of a Ta intermediate layer, J. Nucl. Mater.,317 (2-3) (2003) 212-216.

DOI: 10.1016/s0022-3115(03)00085-0

Google Scholar

[23] J. I. Akhter, M. Ahmad, G. Ali, Diffusion bonding of Ti coated Zircaloy-4 and 316-L Stainless steel, Mater. Charact.,60 (3) (2009) 193-196.

DOI: 10.1016/j.matchar.2008.08.009

Google Scholar

[24] H. Chen, C. Long, T. Wei, W. G. Hongxing X. L. Chen, Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 Stainless steel, Mater. Des., 60 (2014) 358–362.

DOI: 10.1016/j.matdes.2014.03.055

Google Scholar

[25] D. Aboudi, S. Lebaili, M. Taouinet, J. Zollinger, Microstructure evolution of diffusion welded 304L SS/Zircaloy4 with copper interlayer, Mater. Des., 116 (2017) 386–394.

DOI: 10.1016/j.matdes.2016.12.008

Google Scholar

[26] M. Hourcade, le soudage diffusion a l'état solide (Tf<950°C), exemple des métaux ou alliages de Ti, Zr, V, Nb, Ta, Mo ou W, Soud. Tech. Connexes, 5 (6) (1989) 48-56.

Google Scholar

[27] M. Combie, matériaux industriels, zirconium et alliages de zirconium, matériaux métalliques, Ed dunod, Paris (2000) 727-743.

Google Scholar

[28] Properties and Selection: Nonferrous Alloys and Special-Purpose Materials was published in Volume 2 of the 10 Edition Metals Handbook (1990).

Google Scholar

[29] D. Mukherjee and J. P. Panakkal. Interaction between SS-302 and Zircaloy during fuel pin welding. J. of Mat. Sci. Let.14 (1995) 1383-1385.

DOI: 10.1007/bf00270736

Google Scholar

[30] M. Huet, M. Hourcade, B. Hocheid. Solid state diffusion bonding of zircaloy 4 to austenitic stainless steel using metallic interlayers, Mémoire et études scientifiques revue de métallurgie, 85(6) (1988) 313-324.

Google Scholar

[31] P. Lacombe, B. Baroux, G. Beranger, les aciers inoxydables, éditeur scientifiques les éditions de physique (1990).

Google Scholar

[32] Charquet, R. Hahn, E. Ortlieb, J. Gros, J. Wadier, Solubility limits and formation of intermetallic precipitates in Zr Sn Fe Cr. In : 8th International. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1023 , 405–422. Philadelphia, USA (1989).

DOI: 10.1520/stp18878s

Google Scholar

[33] C. Toffolon-Masclet,T. Guilbert, J. Brachet, Study of secondary intermetallic phase precipitation/dissolution in Zr alloys by high temperature–high sensitivity calorimetry. J. Nucl. Mat., 372 (2008) 367-378.

DOI: 10.1016/j.jnucmat.2007.04.042

Google Scholar

[34] E. Rigal, N. Bouquet, M. Bernacki, F. Bernard. Etablissement et évolution des interfaces lors du soudage diffusion. Journées annuelles de la SF2M, Matériaux et conversion d'énergie, Paris, France, 10, <hal-01247744> (2015).

Google Scholar

[35] F. Garzarolli, R. Adamson, K.Coleman. Microstructure of Zirconium Alloys and Effects on Performance. Advanced Nuclear Technology International Europe AB, ANT International, (2015).

Google Scholar

[36] Y. Yang, L. Tan, H. Bei and J.T. Busby, Thermodynamic modeling and experimental study of the Fe-Cr-Zr. J. Nucl. Mater., 441 (2013) 190-202.

DOI: 10.1016/j.jnucmat.2013.05.061

Google Scholar

[37] G. J. Zhou, S. Jin, L.B. Liu, H.S. Liu, and Z.P. Jin: Determination of isothermal section of Fe–Ni–Zr ternary system at 1198 K.Acta.Metall.Sin.20 (2007) 398–402.

DOI: 10.1016/s1006-7191(08)60002-2

Google Scholar

[38] T. Chen, Y. Yang, and L. Tan. Phase Stability in the Fe-Rich Fe-Cr-Ni-Zr Alloys Met. And Mat. Trans. A , 10 48A (2017) 5009-5016.

DOI: 10.1007/s11661-017-4253-0

Google Scholar

[39] B. M. Pande, R. P. Agarwala. Diffusion of nickel and tin in Zircaloy-2. J.Nucl.Mater., 42 (1) (1972) 43–48.

Google Scholar

[40] B.M. Pande, M.C. Naik, R.P. Agarwala. Diffusion of chromium and iron in Zircaloy-2. J. Nucl. Mater., 28 (3) (1968) 324–332.

DOI: 10.1016/0022-3115(68)90200-6

Google Scholar

[41] D.B. Abraham, J.W. Richardson JR, S.M. Mc Deavitt. Microscopy and neutron diffraction study of a zirconium-W8% stainless steel alloy. J. Mat. Sci. 36 (2001) 5143-5154.

Google Scholar