[1]
Z. Sun, R. Karppi, The application of electron beam welding for the joining of dissimilar materials: an overview, J. Mater. Process. Tech., 59 (3) (1996) 257-267.
DOI: 10.1016/0924-0136(95)02150-7
Google Scholar
[2]
A. Joseph, S. K. Rai, T. Jayakumar, N. Murugan, Evaluation of residual stresses in dissimilar weld joints, Int. J. Pres. Ves. Pip., 82 (9) (2005) 700-705.
DOI: 10.1016/j.ijpvp.2005.03.006
Google Scholar
[3]
H. Pan, B. Liu, Y. Guo, Y. Liu, G. Quan, An investigation on diffusion bonding of Zircaloy-4 and 304L stainless steel with Ti and Ag multiple interlayers, Materials Letters 240 (4) (2019) 185-188.
DOI: 10.1016/j.matlet.2018.12.099
Google Scholar
[4]
K. Bhanumurthy, D. Joyson, S.B. Jawale, A. Laik, and G.K. Dey, Diffusion Bonding of Nuclear Materials, BARC Newsl., 331I (3–4) (2013) 19–25.
Google Scholar
[5]
M. Ahmad, J. I. Akhter, M. A. Shaikh, M. Akhtar, M. Iqbal, M. A. Chaudhry, Hardness and microstructural studies of electron beam welded joints of Zircaloy-4 and Stainless steel, J. Nucl. Mater., 301 (2002) 118–121.
DOI: 10.1016/s0022-3115(01)00757-7
Google Scholar
[6]
V. Srikanth, A. Laik, G.K. Dey, Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayer's. Materials & Design, 126,15(7)(2017)141-154.
DOI: 10.1016/j.matdes.2017.04.037
Google Scholar
[7]
G. Perona, R. Sesini, W. Nicodemi, R. Zoja, Study of Zircaloy-2-Stainless steel diffusion bonds, J. Nucl. Mater., 18 (3) (1966) 278-291.
DOI: 10.1016/0022-3115(66)90169-3
Google Scholar
[8]
H. I. Shabban, F. H. Hammad, Investigation of diffusion-bonding between Zircaloy-4 and 304 Stainless steel, J. Nucl. Mater., 71 (2) (1978) 277-285.
DOI: 10.1016/0022-3115(78)90425-7
Google Scholar
[9]
Zhou Hairong, Zhou Bangxin, TEM study of microstructure in explosive welded joints between Zircaloy-4 and Stainless steel, CNIC-01108, SINRE-0067(1996).
Google Scholar
[10]
E. Ahmed, J.I. Akhter, M. Akhtar, and M. Iqbal, Microstructure and Characterization of Phases in TIG Welded Joints of Zircaloy-4 and Stainless Steel, J. Mater. Sci. Lett., 42 (2007) 328–33.
DOI: 10.1007/s10853-006-1028-1
Google Scholar
[11]
E. Brutto, G. Perona, R. Sesini, G. Volta, Diffusion bonding of zircaloy-2 to Steel by swaging, Nucl. Eng. Desi., 3 (1966) 365–368.
DOI: 10.1016/0029-5493(66)90123-3
Google Scholar
[12]
N. F. Kazakov, Diffusion Bonding of Materials, Pergamon Press (1985).
Google Scholar
[13]
P. M. Bartle, Diffusion bonding as a production process – Information Package Series, The Welding Institute, Cambridge (1979).
Google Scholar
[14]
M. Taouinet, S. Lebaili, and N. Souami, Characterization of the Interface to Diffusion Bonding of Zircaloy-4 and Stainless Steel, Phys. Procedia, 2 (2009) 1231–1239.
DOI: 10.1016/j.phpro.2009.11.086
Google Scholar
[15]
B. Zaid, M. Taouinet, N. Souami, and S. Lebaili, Microstructure and Corrosion Aspects of Dissimilar Joints of Zircaloy-4 and 304L Stainless Steel, J. Mater. Eng. Perform., 23(3) (2013) 854–862.
DOI: 10.1007/s11665-012-0319-8
Google Scholar
[16]
P. Gr. Lucuta, I. Pătruand F. Vaciliu, Microstructural Features of Hot Pressure Bonding Between Stainless Steel Type AISI-304 l and Zircaloy-2, J. Nucl. Mater., 99 (1981) 154–164.
DOI: 10.1016/0022-3115(81)90184-7
Google Scholar
[17]
P. Hofmann and M. Markiewicz, Chemical Interactions Between as-Received and Pre-oxidized Zircaloy-4 and Stainless Steel at HighTemperatures, KfK, 5 (1994) 5106.
Google Scholar
[18]
M. Taouinet, S. Lebaili et N. Souami, Étude du soudage diffusion entre l'alliage de zirconium Zy4 et l'acier inoxydable 304L. Morphologie de l'interface et nature des phases formées. Matériaux& Techniques 97, 4 (2009) 261-272.
DOI: 10.1051/mattech/2009041
Google Scholar
[19]
M. Taouinet, N.E. Kamel, and S. Lebaili, Diffusion Bonding Between Zircaloy-4 and 304L Stainless Steel in the Presence of an Eutectic, Mater. Manuf. Process., 28 (2013) 1327–1334.
DOI: 10.1080/10426914.2013.822982
Google Scholar
[20]
A. Lebaili, M. Taouinet, D. Nibou, S. Lebaili, and F. Hodaj. Effect of Isothermal Hold on the Microstructural Evolution of the Stainless Steel 304L/Zircaloy-4 Interface. J. of Mater.Eng.andPerf. 267 (2017) 3112–3120.
DOI: 10.1007/s11665-017-2744-1
Google Scholar
[21]
M.M. Atabaki, Microstructural Evolution in the Partial Transient Liquid Phase Diffusion Bonding of Zircaloy-4 to Stainless Steel 321 Using Active Titanium Filler Metal, J. Nucl. Mater., 406 (2010) 330–341.
DOI: 10.1016/j.jnucmat.2010.09.003
Google Scholar
[22]
J. I. Akther, Q. Zaman, M. A. Shaikh, M. Akthar, M. Iqbal, E. Ahmed, M. Ahmad, Diffusion bonding of Stainless steel to Zircaloy-4 in the presence of a Ta intermediate layer, J. Nucl. Mater.,317 (2-3) (2003) 212-216.
DOI: 10.1016/s0022-3115(03)00085-0
Google Scholar
[23]
J. I. Akhter, M. Ahmad, G. Ali, Diffusion bonding of Ti coated Zircaloy-4 and 316-L Stainless steel, Mater. Charact.,60 (3) (2009) 193-196.
DOI: 10.1016/j.matchar.2008.08.009
Google Scholar
[24]
H. Chen, C. Long, T. Wei, W. G. Hongxing X. L. Chen, Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 Stainless steel, Mater. Des., 60 (2014) 358–362.
DOI: 10.1016/j.matdes.2014.03.055
Google Scholar
[25]
D. Aboudi, S. Lebaili, M. Taouinet, J. Zollinger, Microstructure evolution of diffusion welded 304L SS/Zircaloy4 with copper interlayer, Mater. Des., 116 (2017) 386–394.
DOI: 10.1016/j.matdes.2016.12.008
Google Scholar
[26]
M. Hourcade, le soudage diffusion a l'état solide (Tf<950°C), exemple des métaux ou alliages de Ti, Zr, V, Nb, Ta, Mo ou W, Soud. Tech. Connexes, 5 (6) (1989) 48-56.
Google Scholar
[27]
M. Combie, matériaux industriels, zirconium et alliages de zirconium, matériaux métalliques, Ed dunod, Paris (2000) 727-743.
Google Scholar
[28]
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials was published in Volume 2 of the 10 Edition Metals Handbook (1990).
Google Scholar
[29]
D. Mukherjee and J. P. Panakkal. Interaction between SS-302 and Zircaloy during fuel pin welding. J. of Mat. Sci. Let.14 (1995) 1383-1385.
DOI: 10.1007/bf00270736
Google Scholar
[30]
M. Huet, M. Hourcade, B. Hocheid. Solid state diffusion bonding of zircaloy 4 to austenitic stainless steel using metallic interlayers, Mémoire et études scientifiques revue de métallurgie, 85(6) (1988) 313-324.
Google Scholar
[31]
P. Lacombe, B. Baroux, G. Beranger, les aciers inoxydables, éditeur scientifiques les éditions de physique (1990).
Google Scholar
[32]
Charquet, R. Hahn, E. Ortlieb, J. Gros, J. Wadier, Solubility limits and formation of intermetallic precipitates in Zr Sn Fe Cr. In : 8th International. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1023 , 405–422. Philadelphia, USA (1989).
DOI: 10.1520/stp18878s
Google Scholar
[33]
C. Toffolon-Masclet,T. Guilbert, J. Brachet, Study of secondary intermetallic phase precipitation/dissolution in Zr alloys by high temperature–high sensitivity calorimetry. J. Nucl. Mat., 372 (2008) 367-378.
DOI: 10.1016/j.jnucmat.2007.04.042
Google Scholar
[34]
E. Rigal, N. Bouquet, M. Bernacki, F. Bernard. Etablissement et évolution des interfaces lors du soudage diffusion. Journées annuelles de la SF2M, Matériaux et conversion d'énergie, Paris, France, 10, <hal-01247744> (2015).
Google Scholar
[35]
F. Garzarolli, R. Adamson, K.Coleman. Microstructure of Zirconium Alloys and Effects on Performance. Advanced Nuclear Technology International Europe AB, ANT International, (2015).
Google Scholar
[36]
Y. Yang, L. Tan, H. Bei and J.T. Busby, Thermodynamic modeling and experimental study of the Fe-Cr-Zr. J. Nucl. Mater., 441 (2013) 190-202.
DOI: 10.1016/j.jnucmat.2013.05.061
Google Scholar
[37]
G. J. Zhou, S. Jin, L.B. Liu, H.S. Liu, and Z.P. Jin: Determination of isothermal section of Fe–Ni–Zr ternary system at 1198 K.Acta.Metall.Sin.20 (2007) 398–402.
DOI: 10.1016/s1006-7191(08)60002-2
Google Scholar
[38]
T. Chen, Y. Yang, and L. Tan. Phase Stability in the Fe-Rich Fe-Cr-Ni-Zr Alloys Met. And Mat. Trans. A , 10 48A (2017) 5009-5016.
DOI: 10.1007/s11661-017-4253-0
Google Scholar
[39]
B. M. Pande, R. P. Agarwala. Diffusion of nickel and tin in Zircaloy-2. J.Nucl.Mater., 42 (1) (1972) 43–48.
Google Scholar
[40]
B.M. Pande, M.C. Naik, R.P. Agarwala. Diffusion of chromium and iron in Zircaloy-2. J. Nucl. Mater., 28 (3) (1968) 324–332.
DOI: 10.1016/0022-3115(68)90200-6
Google Scholar
[41]
D.B. Abraham, J.W. Richardson JR, S.M. Mc Deavitt. Microscopy and neutron diffraction study of a zirconium-W8% stainless steel alloy. J. Mat. Sci. 36 (2001) 5143-5154.
Google Scholar