Analytical Modeling and Analysis of the Matter Flow during Friction Stir Welding

Article Preview

Abstract:

Friction stir welding is a solid-phase welding process based on the mixing of the pasty material in the stirred zone. The main advantage of this technique is the ability to weld metal alloys which are generally difficult to weld by conventional welding processes. In this paper an analytical model is proposed for the description in 2D the distribution of the material (fluid) flow in the vicinity of the tool pin during friction stir welding process "FSW". For this reason, the analytical solutions are built on the basis of traditional problem of mechanics of the fluids which is used to solve the equation associated with this problem. Furthermore, the aim is to make an analytical study of these aspects for a better understanding of this phenomenon. This method provides a reduction in computational time compared to those required for finite or differential elements methods. Moreover, it highlights on the effects of the different parameters on the material flow during welding.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 297)

Pages:

1-16

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li. Y. Murr, L. E., and McClure, J. C. J,Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al,, Scripta materialia, 40(9) (1999)1041-1046.

DOI: 10.1016/s1359-6462(99)00062-7

Google Scholar

[2] K. Colligan, Material flow behaviour during friction welding of aluminum,, Weld J, 78(7) (1999) 229-237.

Google Scholar

[3] G. Cui, Z. Ma and S. Li, Periodical plastic flow pattern in friction stir processed Al–Mg alloy,, Scripta Materialia, 58(12) (2008)1082-1085.

DOI: 10.1016/j.scriptamat.2008.02.003

Google Scholar

[4] A.P Reynolds, Flow visualization and simulation in FSW,, Scripta materialia,58(5) (2008) 338-342.

DOI: 10.1016/j.scriptamat.2007.10.048

Google Scholar

[5] A.P Reynolds,Visualisation of material flow in autogenous friction stir welds,, Science and Technology of Welding Joining, 5(2) (2000) 5.

DOI: 10.1179/136217100101538119

Google Scholar

[6] T. U. Seidel and A. P. Reynolds ,Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique T.U,, Metallurgical and Materials Transactions A, 32(11) (2001) 2879-2884.

DOI: 10.1007/s11661-001-1038-1

Google Scholar

[7] J. Schneider and A. N. Jr, Thermo-mechanical processing in friction stir welds,(2002) 43-51.

Google Scholar

[8] F.Gratecap, M. Girard, S. Marya and G Racineux, Exploring material flow in friction stir welding : Tool eccentricity and formation of banded structures,,journal of material forming, 5(2) (2011) 99-107.

DOI: 10.1007/s12289-010-1008-5

Google Scholar

[9] P. Heurtier, M. Jones and C. Desrayaud, Mechanical and thermal modelling of friction stir welding,,Journal of Materials , 171(3) (2006)348-357.

DOI: 10.1016/j.jmatprotec.2005.07.014

Google Scholar

[10] Y. S. Sato, H. Takauchi, S. H. C. Park and H. Kokawa, Characteristics of the kissing-bond in friction stir welded Al alloy 1050,, Materials Science and Engineering. A, 405(1-2) (2005) 333–338.

DOI: 10.1016/j.msea.2005.06.008

Google Scholar

[11] S. Xu and X. Deng, A study of texture patterns in friction stir welds,, Acta Materialia. 56. (2008)1326-1341.

DOI: 10.1016/j.actamat.2007.11.016

Google Scholar

[12] Z. Zhang, B. Xiao and Z. Ma, Effect of Segregation of Secondary Phase Particles and "S" Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints,, Metal lurgical and Materials Transactions A. (2013).

DOI: 10.1007/s11661-013-1778-8

Google Scholar

[13] L. Ye. Rim, No. Kookil, Y. Jong-Hoon, Y. Joon-Tae and L. Ho-Sung, Investigation of Microstructure in Friction Stir Welded Al-Cu-Li alloy,,Key Engineering Materials, 705 (2016) 240-244.

DOI: 10.4028/www.scientific.net/kem.705.240

Google Scholar

[14] F.C. Liu and T.W. Nelson, In-situmaterial flow pattern around probe during friction stir welding of austenitic stainless steel,, Materials and Design, 110 (2016) 354–364.

DOI: 10.1016/j.matdes.2016.07.147

Google Scholar

[15] R. Kumar, V. Pancholi and R.P. Bharti, Material flow visualization and determination of strain rate during friction stir welding,, Journal of Materials Processing Tech, 255 (2018) 470–476.

DOI: 10.1016/j.jmatprotec.2017.12.034

Google Scholar

[16] X.C. Liu and C.S.Wu,Material flow in ultrasonic vibration enhanced friction stir welding,, Journal of Materials Processing Technology, 225 (2015) 32–44.

DOI: 10.1016/j.jmatprotec.2015.05.020

Google Scholar

[17] E. Hoyos, D. López and H. Alvarez, A phenomenologically basedmaterial flowmodel for friction stirwelding,, Materials and Design, 111 (2016) 321–330.

DOI: 10.1016/j.matdes.2016.09.009

Google Scholar

[18] E. Feulvarche, Modélisation numérique du soudage par friction malaxage,, Thèse de doctorat, Université Jean Monnet de Saint-Etienne.,(2005).

DOI: 10.51257/a-v3-bm7764

Google Scholar

[19] A. Bastier, Modélisation du soudage d'alliages d'aluminium par friction et malaxage ,, Thèse de doctorat, Ecole polytechnique. (2006).

Google Scholar

[20] A. Guedoiri, Contribution à la modelisation et à la simulation numérique du soudage par friction et malaxage, Thèse de doctorat, Arts et Métiers ParisTech. (2012).

DOI: 10.1522/030333805

Google Scholar

[21] T. Heuzé, Modélisation des couplages fluide /solide dans les procédés d'assemblage à haute température,, Thèse de doctorat, Université Pierre et Marie Curie. (2011).

DOI: 10.1051/meca/2011113

Google Scholar

[22] R. Brun, and N. Belouaggadia, Ecoulement et transferts fluide parfaits, fluids réels, convection,, Ellipses, (2011).

Google Scholar