[1]
Ferhat M, Zaoui A, Ahuja R. Magnetism and band gap narrowing in Cu-doped ZnO. Applied Physics Letters. 2009;94.
DOI: 10.1063/1.3112603
Google Scholar
[2]
Huang D, Zhao YJ, Chen DH, Shao YZ. Magnetism and clustering in Cu doped ZnO. Applied Physics Letters. 2008;92.
Google Scholar
[3]
Wu QY, Huang ZG, Wu R, Chen LJ. Cu-doped AlN: a dilute magnetic semiconductor free of magnetic cations from first-principles study. Journal of Physics-Condensed Matter. 2007;19.
DOI: 10.1088/0953-8984/19/5/056209
Google Scholar
[4]
Ziq KA, Ismail A, Salem AF, Ahmed S, Ghannam A. Effects of Cu-Doping on the Magnetic State of Zn0.9-xFe0.1CuxO. Journal of Nanoscience and Nanotechnology. 2011;11:2579-82.
Google Scholar
[5]
Thakur P, Bisogni V, Cezar JC, Brookes NB, Ghiringhelli G, Gautam S, et al. Electronic structure of Cu-doped ZnO thin films by x-ray absorption, magnetic circular dichroism, and resonant inelastic x-ray scattering. Journal of Applied Physics. 2010;107.
DOI: 10.1063/1.3372758
Google Scholar
[6]
Ran FY, Subramanian M, Tanemura M, Hayashi Y, Hihara T. Ferromagnetism in Cu-doped AlN films. Applied Physics Letters. 2009;95.
DOI: 10.1063/1.3232238
Google Scholar
[7]
Bednorz JG, Müller KA. perovskith type oxides the new approach to high Tc Superconductivity. Reviews of Modrn physics 1988; 60: 85-110.
Google Scholar
[8]
Baba-Kishi KZ, Camps RA, Thomas PA. Transmission electron microscope studies of the crystal structure of Y2Cu2O5 and the nature of nonperiodic planar defects in Y2Cu2O5. Journal of Physics: Condensed Matter. 1990; 2:5085.
DOI: 10.1088/0953-8984/2/23/001
Google Scholar
[9]
Feng CN, Lovett DR. The characteristics and nature of planar defects in Y2Cu2O5 with x=0.05,0.1,0.2 and 0.4. Journal of Physics: Condens Matter. 1998;10:3497-507.
Google Scholar
[10]
Fujii H, Ozawa K, Nakane T, Yamaguchi H. Preparation and characterization of YBa2Cu3Oz particles by the metal chelate decomposition method Superconductor Science and Technology. 2005; 18:1185.
DOI: 10.1088/0953-2048/18/9/003
Google Scholar
[11]
Tajima H, Maeda A, Kobayashi M, Satake T, Shimada H, Miyama S, et al. Composition Dependence of the Physical Properties in the Superconducting Y-Ba-Cu-O System. Japanese Journal of Applied Physics. 1987;26:L845.
DOI: 10.1143/jjap.26.l845
Google Scholar
[12]
Gadalla AM, Kongkachuichay P. Compatible phases of the Y2O3–CuO–Cu2O system in air. Journal of Materials Research. 1991;6:450-4.
Google Scholar
[13]
Kambe S, Akao T, Shime I, Ohshima S, Okuyama K. Preparation of a single phase sample of (Bi1−xCux)Sr2YCu2Oy and its physical properties. Materials Science and Engineering: B. 1995;32:57-61.
DOI: 10.1016/0921-5107(94)01174-5
Google Scholar
[14]
Meng Y. Preparation of Y2Cu2O5 photocatalyst for H2 production under simulated sunlight irradiation. The Chinese Journal of Nonferrous Metals. 2012; 22:1705-10.
Google Scholar
[15]
Zhang L, Huang KL, Chen H, Yan JH. Preparation and Modification of Y2Cu2O5/Y2O3 Photocatalysts for H2 Evolution under Simulated Sunlight Irradiation. Advanced Materials Research. 2011; 239:3001-4.
Google Scholar
[16]
Troc R, Bukowski Z, Horyn R, Klamut J. Possible antiferromagnetic ordering in Y2Cu2O5. Paramagnetic behaviour of BaCuO2. Physics Letters A. 1987; 125:222-4.
DOI: 10.1016/0375-9601(87)90103-4
Google Scholar
[17]
Lebech B, MATSUOKA Y, Kakurai K, Motokawa M. Neutron diffraction investigation of the metamagnetic transition in Y2Cu2O5. Progress of theoretical physics Supplement. 2005:222-7.
DOI: 10.1143/ptps.159.222
Google Scholar
[18]
Ramakrishna B, Ong E, Iqbal Z. Magnetic properties of Y2Cu2O5. Solid State Communications. 1988; 68: 775-9.
DOI: 10.1016/0038-1098(88)90062-2
Google Scholar