[1]
G. Goch, et al, Review of non-destructive measuring methods for the assessment of surface integrity: a survey of new measuring methods for coatings, layered structures and processed surfaces, Precision Engineering, 23(1) (1999) 9-33.
DOI: 10.1016/s0141-6359(98)00021-x
Google Scholar
[2]
C.A. Van Luttervelt, et al, Present situation and future trends in modelling of machining operations progress report of the CIRP Working Group 'Modelling of Machining Operations, CIRP Annals-Manufacturing Technology, 47(2) (1998) 587-626.
DOI: 10.1016/s0007-8506(07)63244-2
Google Scholar
[3]
I.S. Jawahir, C.A. Van Luttervelt, Recent developments in chip control research and applications, CIRP Annals-Manufacturing Technology, 42(2) (1993) 659-693.
DOI: 10.1016/s0007-8506(07)62531-1
Google Scholar
[4]
A.A. Fomin, Kinematics of surface formation in milling Russian Engineering Research, 33(11) (2013) 660-662.
DOI: 10.3103/s1068798x13110099
Google Scholar
[5]
R.D. Young, T.V. Vorburger, E.C. Teague, In-process and on-line measurement of surface finish, CIRP Annals-Manufacturing Technology, 29(1) (1980) 435-440.
DOI: 10.1016/s0007-8506(07)61366-3
Google Scholar
[6]
A.A. Fomin, V.G. Gusev, Spindle Rigidity in Milling Blanks with Nonuniform Properties, Russian Engineering Research, 33(11) (2013) 646-648.
DOI: 10.3103/s1068798x13110087
Google Scholar
[7]
X. Su, et al, Predictive model of milling force for complex profile milling. The International Journal of Advanced Manufacturing Technology, 87(5) (2016) 1653-1662.
DOI: 10.1007/s00170-016-8589-1
Google Scholar
[8]
T. Ohuchi, Y. Murase, Milling of wood and wood-based materials with a computerized numerically controlled router IV: development of automatic measurement system for cutting edge profile of throw-away type straight bit. Journal of wood science, 51(3) (2005) 278-281.
DOI: 10.1007/s10086-004-0663-x
Google Scholar
[9]
A.A. Fomin, et al., Mechanical treatment of raw waste lumber an effective way to preserve the ecology and resources IOP Conference Series: Materials Science and Engineering 142(1) (2016) 012091.
DOI: 10.1088/1757-899x/142/1/012091
Google Scholar
[10]
A. Banerjee, H.Y. Feng, E.V. Bordatchev, Geometry of chip formation in circular end milling. The International Journal of Advanced Manufacturing Technology, 59(1-4) (2012) 21-35.
DOI: 10.1007/s00170-011-3478-0
Google Scholar
[11]
I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, et al., High Temp, 55(4) (2017) 524.
Google Scholar
[12]
I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut, 59 (2016) 414.
Google Scholar
[13]
O.V. Kolenchenko, Influence of the milling conditions on the deformation and quality of the machined surface. Russian Engineering Research, 30(8) (2010) 839-844.
DOI: 10.3103/s1068798x1008023x
Google Scholar
[14]
Yu.S. Stepanov, G.V. Barsukov, S.G. Bishutin, Technological fundamentals for efficiency control of hydroabrasive cutting Procedia Engineering, 150 (2016) 717-725.
DOI: 10.1016/j.proeng.2016.07.093
Google Scholar
[15]
D.I. Volkov, A.A. Koryazhkin, Russ. Engin. Res., 32 (2012) 698.
Google Scholar
[16]
D.I. Volkov, A.A. Koryazhkin, Adaptive belt grinding of gas-turbine blades, Russian Engineering Research, 34(1) (2014) 37-40.
DOI: 10.3103/s1068798x14010171
Google Scholar
[17]
A.A. Fomin, V.G. Gusev and Z.G. Sattarova, Geometrical errors of surfaces milled with convex and concave profile tools, Solid State Phenomena, 284 (2018): 281-288.
DOI: 10.4028/www.scientific.net/ssp.284.281
Google Scholar
[18]
D.B. Prosvirnikov, et al., Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release, Proceedings of 2017, ICIEAM 2017, art. no. 8076443.
DOI: 10.1109/icieam.2017.8076443
Google Scholar
[19]
V.A. Saldaev, et al., Equipment for the production of wood-polymeric thermal insulation materials IOP Conference Series: Materials Science and Engineering, 142(1) (2016) 012097.
DOI: 10.1088/1757-899x/142/1/012097
Google Scholar
[20]
A.R. Sadrtdinov, et al., The development of equipment for the disposal of solid organic waste and optimization of its operation IOP Conference Series: Materials Science and Engineering 142(1) (2016) 012095.
DOI: 10.1088/1757-899x/142/1/012095
Google Scholar
[21]
A.A. Fomin, Microgeometry of surfaces after profile milling with the use of automatic cutting control system. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, art. no. 8076117.
DOI: 10.1109/icieam.2017.8076117
Google Scholar
[22]
Y. Li, J.W. Fan, D.J. Chen, X.F. Wang, Modeling and Simulation of Formed Milling Cutter for Screw Based on Non-instantaneous Envelope Method. In Advances in Automation and Robotics, 2 (2011) 61-68.
DOI: 10.1007/978-3-642-25646-2_8
Google Scholar
[23]
A.A. Fomin, Limiting product surface and its use in profile milling design operations. Solid State Phenomena, 265 (2017) 672-678.
DOI: 10.4028/www.scientific.net/ssp.265.672
Google Scholar
[24]
A.R. Sadrtdinov, et al., The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas. IOP Conference Series: Materials Science and Engineering 124(1) (2016) 012092.
DOI: 10.1088/1757-899x/124/1/012092
Google Scholar
[25]
A.A. Fomin, V.G. Gusev, Safe machining of blanks with nonuniform properties Russian Engineering Research, 33(10) (2013) 602-606.
DOI: 10.3103/s1068798x13100043
Google Scholar
[26]
L. Fernández-Robles, G. Azzopardi, E. Alegre, N. Petkov, Cutting edge localisation in an edge profile milling head. In International Conference on Computer Analysis of Images and Patterns, (2015) 336-347.
DOI: 10.1007/978-3-319-23117-4_29
Google Scholar
[27]
Y. Namba, H. Tsuwa, Geometrical adaptive control in profile milling by CNC system. In Proceedings of the Seventeenth International Machine Tool Design and Research Conference, Macmillan Education UK, (1977) 67-74.
DOI: 10.1007/978-1-349-81484-8_9
Google Scholar
[28]
A.A. Fomin, Kinematics of surface formation in milling Russian Engineering Research 33(11) (2013) 660-662.
DOI: 10.3103/s1068798x13110099
Google Scholar
[29]
A.A. Fomin, Determining undeformed chip thickness models in milling and its verification during wood processing, Solid State Phenomena, 265 (2017) 598-605.
DOI: 10.4028/www.scientific.net/ssp.265.598
Google Scholar
[30]
N.F. Timerbaev, et.al., Application of software solutions for modeling and analysis of parameters of belt drive in engineering. IOP Conf. Ser.: Earth Environ. Sci., 87(8) (2017) 082047.
DOI: 10.1088/1755-1315/87/8/082047
Google Scholar
[31]
G. Totis, et al., Upgraded stability analysis of milling operations by means of advanced modeling of tooling system bending. International Journal of Machine Tools and Manufacture, 113 (2017) 19-34.
DOI: 10.1016/j.ijmachtools.2016.11.005
Google Scholar
[32]
Michael V. Drapalyuk, et al., IOP Conf. Ser.: Mater. Sci. Eng., 142 (2016) 012090.
Google Scholar
[33]
R. Safin, et al., A mathematical model of thermal decomposition of wood in conditions of fluidized bed, Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58(2) (2016) 141-148.
Google Scholar
[34]
C. Li, X. Chen, Y. Tang, L. Li, Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. Journal of Cleaner Production, 140 (2017) 1805-1818.
DOI: 10.1016/j.jclepro.2016.07.086
Google Scholar
[35]
N.F. Timerbaev, A.R. Sadrtdinov and R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering. Procedia Engineering 206 (2017) 1376-1381.
DOI: 10.1016/j.proeng.2017.10.648
Google Scholar
[36]
Dimov Yuriy, Dmitriy Podashev. Optimization of Edge Rounding with Elastic Abrasive Tools // International Journal of Engineering and Technology (IJET). Dec 2015-Jan 2016. – vol. 7, №6. – P. 2001-2007.
Google Scholar
[37]
V.V. Stepanov, et al., Composite Material for Railroad Tie, Solid State Phenomena, 265 (2017) 587-591.
DOI: 10.4028/www.scientific.net/ssp.265.587
Google Scholar
[38]
L. Fernández-Robles, et al., Machine-vision-based identification of broken inserts in edge profile milling heads, Robotics and Computer-Integrated Manufacturing, 44 (2017) 276-283.
DOI: 10.1016/j.rcim.2016.10.004
Google Scholar
[39]
D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng., 221(1) (2017) 012009.
Google Scholar
[40]
N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin and A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock, Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, art. no. 8076418.
DOI: 10.1109/icieam.2017.8076418
Google Scholar
[41]
O.V. Kolenchenko, Influence of the milling conditions on the deformation and quality of the machined surface. Russian Engineering Research, 30(8) (2010) 839-844.
DOI: 10.3103/s1068798x1008023x
Google Scholar
[42]
D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng., 221(1) (2017) 012010.
Google Scholar
[43]
V.A. Lashkov, et al., IOP Conf. Ser.: Mater. Sci. Eng., 124 (2016) 012111.
Google Scholar
[44]
D.V. Tuntsev, et al., The mathematical model of fast pyrolysis of wood waste. Proceedings of 2015, MEACS 2015. art. no. 7414929.
Google Scholar
[45]
R.G. Safin et al., Technology of Wood Waste Processing to Obtain Construction Material, Solid State Phenomena, 265 (2017) 245-249.
DOI: 10.4028/www.scientific.net/ssp.265.245
Google Scholar
[46]
Dimov Yu. V., Podashev D.B. Efficient Machining by Elastic Abrasive Wheels. Russian Engineering Research. – 2017. – vol. 37, №7. – P. 655-659.
DOI: 10.3103/s1068798x17070097
Google Scholar
[47]
I.A. Popov, et al., Cooling systems for electronic devices based on the ribbed heat pipe. Russian Aeronautics (Iz VUZ) 58(3) (2015) 309-314.
DOI: 10.3103/s1068799815030101
Google Scholar
[48]
Dimov Yu. V., Podashev D.B. Edge Forces in Machining by Abrasive Brushes. Russian Engineering Research. – 2017. – vol. 37, №2. – P. 117-121.
DOI: 10.3103/s1068798x17020058
Google Scholar
[49]
V.E. Ovcharenko, K.V. Ivanov, Y.F. Ivanov, et al., Russ Phys J., 59 (2017) 2114.
Google Scholar
[50]
J. Wang, J. Qian, E. Ferraris, D. Reynaerts, In-situ process monitoring and adaptive control for precision micro-EDM cavity milling. Precision Engineering, 47 (2017) 261-275.
DOI: 10.1016/j.precisioneng.2016.09.001
Google Scholar
[51]
A. Bardovsky, A. Gerasimova, A. Aydunbekov, The principles of the milling equipment improvement, MATEC Web of Conferences, 224, (2018).
DOI: 10.1051/matecconf/201822401019
Google Scholar
[52]
A.A. Gerasimova, A.G. Radyuk, A.E. Titlyanov, Wear-resistant aluminum and chromonickel coatings at the narrow mold walls in continuous-casting machines, Steel in Translation, 46 (7) (2016) 458- 462.
DOI: 10.3103/s0967091216070068
Google Scholar
[53]
A.A. Gerasimova, A.G. Radyuk, The improvement of the surface quality of workpieces by coating, CIS Iron and Steel Review, (9) (2014) 33-35.
Google Scholar
[54]
R.Y. Nekrasov, Y.A. Tempel, U.S. Putilova, Precision CNC machining and ways to achieve it, MATEC Web of conferences ICMTMTE, 224 (2018) 30.
DOI: 10.1051/matecconf/201822401048
Google Scholar
[55]
R.Y. Nekrasov, Y.A. Tempel, O.A. Tempel, I.V. Soloviev, A.I. Starikov, Numerical studies to determine spatial deviations of a workpiece that occur when machining on CNC machines, MATEC Web of conferences ICMTMTE, 129 (2017) 7.
DOI: 10.1051/matecconf/201712901072
Google Scholar
[56]
R.Y. Nekrasov, Y.A. Tempel, A.I. Starikov, N.A. Proskuryakov, Fuzzy Controllers in the Adaptive Control System of a CNC Lathe, Russian Engineering Research, 38(3) (2018) 220-222.
DOI: 10.3103/s1068798x18030188
Google Scholar
[57]
F.V. Grechnikov, A.F. Rezchikov, O.V. Zakharov, Iterative Method of Adjusting the Radius of the Spherical Probe of Mobile Coordinate-Measuring Machines When Monitoring a Rotation Surface. Measurement Techniques, 61 (2018) 347-352.
DOI: 10.1007/s11018-018-1432-3
Google Scholar
[58]
A.F. Rezchikov, A.V. Kochetkov, and O.V. Zakharov, Mathematical models for estimating the degree of influence of major factors on performance and accuracy of coordinate measuring machines. MATEC Web Conf., 129 (2017) 01054.
DOI: 10.1051/matecconf/201712901054
Google Scholar
[59]
O.V. Zakharov, A.V. Kochetkov, Minimization of the systematic error in centerless measurement of the roundness of parts. Measurement Techniques, 58 (2016) 1317-1321.
DOI: 10.1007/s11018-016-0892-6
Google Scholar
[60]
V. Yemelyanov, T. Tochilkina, E. Vasilieva, A. Nedelkin, E. Shved, Computer diagnostics of the torpedo ladle cars, AIP Conference Proceedings, 020008, Vol. 2034, (2018).
DOI: 10.1063/1.5067351
Google Scholar
[61]
V.A. Yemelyanov, Intelligent information technology of visual information processing for metals diagnostics, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4 (2014) 66-73.
DOI: 10.29202/nvngu
Google Scholar
[62]
O.V. Sharkov, S.I. Koryagin, N.L. Velikanov, Design Models for Shaping of Tooth Profile of External Fine-Module Ratchet Teeth // IOP Conference Series: Materials Science and Engineering, 124 (2016) 012165.
DOI: 10.1088/1757-899x/124/1/012165
Google Scholar
[63]
O.V. Sharkov, S.I. Koryagin, N.L. Velikanov, Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting, IOP Conference Series: Materials Science and Engineering, 327 (2018) 042102.
DOI: 10.1088/1757-899x/327/4/042102
Google Scholar
[64]
V.E. Gromov, V.E. Kormyshev, A.M. Glezer, etc., Microstructure and wear properties of Hardox 450 steel surface modified by Fe-C-Cr-Nb-W powder wire surfacing and electron beam treatment, IOP Conference Series: Materials Science and Engineering, 411(1) (2018).
DOI: 10.1088/1757-899x/411/1/012024
Google Scholar
[65]
S. Konovalov, X. Chen, V. Sarychev, etc., Mathematical modeling of the concentrated energy flow effect on metallic materials, Metals, 7(1) (2017).
Google Scholar