[1]
J. Viňáš, M. Ábel, Analysis of laser welds on automotive steel sheets, Mater. Sci. Forum 818 (2015) 239-242. https://doi.org/10.4028/www.scientific.net/MSF.818.239.
DOI: 10.4028/www.scientific.net/msf.818.239
Google Scholar
[2]
K.T. Lee, C.S. Park, H.Y. Kim, Fatigue and buckling analysis of automotive components considering forming and welding effects, Int. J. Automot. Technol. 18(1) (2017) 97-102. https://doi.org/10.1007/s12239-017-0010-z.
DOI: 10.1007/s12239-017-0010-z
Google Scholar
[3]
A. Kovács, Integrated task sequencing and path planning for robotic remote laser welding, Int. J. Prod. Res., 54(4) (2016) 1210-1224. https://doi.org/10.1080/00207543.2015.1057626.
DOI: 10.1080/00207543.2015.1057626
Google Scholar
[4]
S.N. Larin, V.I. Platonov, G.A. Nuzgdin, Technological exercise of cell structure forming, Key Eng. Mater. 736 (2017) 122-126. https://doi.org/10.4028/www.scientific.net/ KEM.736.122.
DOI: 10.4028/www.scientific.net/kem.736.122
Google Scholar
[5]
T. Slezak, L. Sniezek, Fatigue life of welded joints of high-strength structural steel S960QL, Solid State Phenom. 250 (2016) 169-174. https://doi.org/10.4028/www.scientific.net/ SSP.250.169.
DOI: 10.4028/www.scientific.net/ssp.250.169
Google Scholar
[6]
R. Rajan, P. Kah, B. Mvola, J. Martikainen, Trends in aluminium alloy development and their joining methods, Rev. Adv. Mater. Sci. 44(4) (2016). 383-397.
Google Scholar
[7]
A. F. І. Idan, O. Akimov, L. Golovko, O. Goncharuk, K. Kostyk, The study of the influence of laser hardening conditions on the change in properties of steels, EEJET 2(5(80)) (2016) 69-73.
DOI: 10.15587/1729-4061.2016.65455
Google Scholar
[8]
H.T. Kashani, P. Kah, J. Martikainen, Laser overlap welding of zinc-coated steel on aluminum alloy, Phys. Procedia, 78 (2015) 265-271. https://doi.org/10.1016/ j.phpro.2015.11.037.
DOI: 10.1016/j.phpro.2015.11.037
Google Scholar
[9]
V. Dzhemelinskyi, D. Lesyk, О. Goncharuk, О. Dаnylеikо, Surface hardening and finishing of metallic products by hybrid laser-ultrasonic treatment, EEJET 1(12(91)) (2018) 35-42. https://doi.org/10.15587/1729-4061.2018.124031.
DOI: 10.15587/1729-4061.2018.124031
Google Scholar
[10]
L.M. Lobanov, V.I. Kyr'yan, V.V Knysh, Enhancement of the service life of welded metal structures by high-frequency mechanical peening, Mater. Sci. 42(1) (2006) 54-60. https://doi.org/10.1007/s11003-006-0057-x.
DOI: 10.1007/s11003-006-0057-x
Google Scholar
[11]
V.V. Knysh, S.O. Solovei, S.O. Osadchuk, L.I. Nyrkova, Influence of hardening by high-frequency mechanical impacts of butt welded joints made of 15KhSND steel on their atmospheric corrosion and fatigue fracture resistance, Mater. Sci. 54(3) (2018) 421-429. https://doi.org/10.1007/s11003-018-0201-4.
DOI: 10.1007/s11003-018-0201-4
Google Scholar
[12]
G. Costanza, M.E. Tata, D. Cioccari, Explosion welding: process evolution and parameters optimization, Mater. Sci. Forum 941 (2018) 1558-1564. https://doi.org/10.4028/ www.scientific.net/MSF.941.1558.
DOI: 10.4028/www.scientific.net/msf.941.1558
Google Scholar
[13]
O. Berdnikova, V. Pozniakov, A. Bernatskyi, T. Alekseienko, V. Sydorets, Effect of the structure on the mechanical properties and cracking resistance of welded joints of low-alloyed high-strength steels, Procedia Struct. Integrity 16 (2019) 89-96. https://doi.org/10.1016/j.prostr.2019.07.026.
DOI: 10.1016/j.prostr.2019.07.026
Google Scholar
[14]
V.V. Kvasnitskii, V.D. Kuznetsov, Y.F. Ivanov, A.D. Teresov, L.I. Markashova, V.F. Kvasnitskii, A high-current electron beam application for the surface modification of iron, stainless steel, and heat resistant alloys, Surf. Eng. Appl. Electrochem. 45(3) (2009) 180-185. https://doi.org/10.3103/S1068375509030028.
DOI: 10.3103/s1068375509030028
Google Scholar
[15]
S. Ivanov, E. Zemlyakov, K. Babkin, G. Turichin, I. Karpov, V. Em, S. Rylov, Stress distribution in laser metal deposited multi-layer thick-walled parts of Ti-6Al-4V, Procedia Manuf. 36 (2019) 240-248. https://doi.org/10.1016/j.promfg.2019.08.031.
DOI: 10.1016/j.promfg.2019.08.031
Google Scholar
[16]
D.V. Laukhin, O.V. Beketov, N.O. Rott, I.A. Tyuterev, S.V. Ivantsov, V.D. Laukhin, The analysis of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture, Metallofiz. Noveishie Tekhnol. 39(10) (2017) 1335-1343 https://doi.org/10.15407/mfint.39.10.1335.
DOI: 10.15407/mfint.39.10.1335
Google Scholar
[17]
O. Goncharuk, R. Zhuk, O. Kaglyak, V. Dzhemelinskyi, D. Lesyk, Laser sintering of abrasive layers with inclusions of cubic boron nitride grains, Lasers Manuf. Mater. Process. 5(3) (2018) 298-316. https://doi.org/10.1007/s40516-018-0068-0.
DOI: 10.1007/s40516-018-0068-0
Google Scholar
[18]
D. Laukhin, O. Beketov, N. Rott, A. Schudro, The elaboration of modernized technology of controlled rolling directed at the formation of high strengthening and viscous qualities in HSLA steel, Solid State Phenom. 291 (2019) 13-19. https://doi.org/10.4028/ www.scientific.net/SSP.291.13.
DOI: 10.4028/www.scientific.net/ssp.291.13
Google Scholar
[19]
D. Reitemeyer, Laser welding of large scale stainless steel aircraft structures, Phys. Procedia 41 (2013) 106-111. https://doi.org/10.1016/j.procir.2018.08.151.
DOI: 10.1016/j.phpro.2013.03.057
Google Scholar
[20]
A.V. Bernatskyi, O.M. Berdnikova, I.M. Klochkov, V.M. Sydorets, D.A. Chinakhov. Laser welding in different spatial positions of T-joints of austenitic steel. IOP Conf. Ser. Mater. Sci. Eng., 582 (2019) 012048. https://doi.org/10.1088/1757-899X/582/1/012048.
DOI: 10.1088/1757-899x/582/1/012048
Google Scholar
[21]
P. Vasantharaja, M. Vasudevan, P. Palanichamy, Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints, J. Manuf. Processes 19 (2015) 187-193. https://doi.org/10.1016/j.jmapro.2014.09.004.
DOI: 10.1016/j.jmapro.2014.09.004
Google Scholar
[22]
R. Ilyushenko, V. Nesterenkov, Novel technique for joining of thick section difficult-to-weld aluminium alloys, Mat. Sci. Forum 519-521 (2006) 1125-1130. doi:10.4028/ www.scientific.net/MSF.519-521.1125.
DOI: 10.4028/www.scientific.net/msf.519-521.1125
Google Scholar
[23]
O. Nazarenko, V. Nesterenkov, R. Ilyushenko, Weldability of aircraft aluminum alloys of great thickness in EBW, Avtomaticheskaya Svarka (8) (2005) 25-30.
Google Scholar
[24]
R. Lin, H.P. Wang, F. Lu, J. Solomon, B.E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, Int. J. Heat Mass. Transfer 108 (2017) 244-256. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.019.
DOI: 10.1016/j.ijheatmasstransfer.2016.12.019
Google Scholar
[25]
O.M. Ivasishin, S.V. Akhonin, D.G. Savvakin, V.A. Berezos, V.I. Bondarchuk, O.O. Stasyuk, P.E. Markovsky, Effect of microstructure, deformation mode and rate on mechanical behaviour of electron-beam melted Ti-6Al-4V and Ti-1.5Al-6.8Mo-4.5Fe alloys, Prog. Phys. Met., 19(3) (2018) 309-336. https://doi.org/10.15407/ufm.19.03.309.
DOI: 10.15407/ufm.19.03.309
Google Scholar
[26]
S.V. Akhonin, R.N. Mishchenko, I.K. Petrichenko, Investigation of the weldability of titanium alloys produced by different methods of melting, Mater. Sci. 42 (2006) 323-329. https://doi.org/10.1007/s11003-006-0086-5.
DOI: 10.1007/s11003-006-0086-5
Google Scholar
[27]
O.F. Bondarenko, I.V. Bondarenko, P.S. Safronov, V.M. Sydorets, Current and force control in micro resistance welding machines: Review and development. 2013 8th International Conference-Workshop on Compatibility and Power Electronics (CPE 2013) Ljubljana, 5-7 June 2013. IEEE, Ljubljana, pp.298-303. https://doi.org/10.1109/CPE.2013.6601173.
DOI: 10.1109/cpe.2013.6601173
Google Scholar
[28]
A.I. Ustinov, Y.V. Falchenko, A.Y. Ishchenko, G.K. Kharchenko, T.V. Melnichenko, A.N. Muraveynik, Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics 16(8) (2008) 1043-1045. https://doi.org/10.1016/j.intermet.2008.05.002.
DOI: 10.1016/j.intermet.2008.05.002
Google Scholar
[29]
J. Adamiec, R. Kocurek, Effect of autogenous laser weld on microstructure and mechanical properties of Inconel 617 nickel alloy, Solid State Phenom. 226 (2015) 43-46. https://doi.org/10.4028/www.scientific.net/SSP.226.43.
DOI: 10.4028/www.scientific.net/ssp.226.43
Google Scholar
[30]
V.M. Nesterenkov, Y.V. Orsa, K.S. Khripko, Renewal of elements and construction units of gas turbine engines by means EBW, IOP Conf. Ser. Mater. Sci. Eng. 582(1) (2019) 012049. https://doi.org/10.1088/1757-899X/582/1/012049.
DOI: 10.1088/1757-899x/582/1/012049
Google Scholar
[31]
P. Kah, J. Martikainen, Current trends in welding processes and materials: improve in effectiveness, Rev. Adv. Mater. Sci. 30(2) (2012) 189-200.
Google Scholar
[32]
A.D. Razmyshlyayev, M.V. Mironova, S.V. Yarmonov, P.A. Vydmysh, The speed of flows in the pool in arc welding in a transverse magnetic field, Weld. Int. 29(4) (2015) 296-300. https://doi.org/10.1080/09507116.2014.921376.
DOI: 10.1080/09507116.2014.921376
Google Scholar
[33]
V.V. Chigarev, N.A. Makarenko, O.H. Hryn, S.H. Plis, D.M. Holub, Gas-slag-forming system of flux-cored wires for plasma-MIG building-up welding, Int. J. Eng. Res. Africa 33 (2017) 35-39. https://doi.org/10.4028/www.scientific.net/JERA.33.35.
DOI: 10.4028/www.scientific.net/jera.33.35
Google Scholar
[34]
P. Kah, M. Pirinen, R. Suoranta, J. Martikainen, Welding of ultra high strength steels, Adv. Mater. Res. 849 (2014) 357-365. https://doi.org/10.4028/www.scientific.net/AMR.849.357.
DOI: 10.4028/www.scientific.net/amr.849.357
Google Scholar
[35]
A.F. Vlasov, N.A. Makarenko, A.M. Kushchiy, Using exothermic mixtures in manual arc welding and electroslag processes, Weld. Int. 31(7) (2017) 565-570. https://doi.org/10.1080/09507116.2017.1295561.
DOI: 10.1080/09507116.2017.1295561
Google Scholar
[36]
A.D. Razmyshlyaev, M.V. Ahieieva, Features of arc surfacing process in a longitudinal magnetic field, Appl. Mech. Mater. 682 (2014) 313-318. https://doi.org/10.4028/ www.scientific.net/AMM.682.313.
DOI: 10.4028/www.scientific.net/amm.682.313
Google Scholar
[37]
D.P. Il'Yaschenko, D.A. Chinakhov, Y.M. Gotovschik, Investigating the influence of the power supply type upon the properties of the weld joints under manual arc welding, Adv. Mater. Res. 1040 (2014) 837-844). https://doi.org/10.4028/www.scientific.net/AMR.1040.837.
DOI: 10.4028/www.scientific.net/amr.1040.837
Google Scholar
[38]
A.F. Vlasov, N.A. Makarenko, Special features of heating and melting electrodes with an exothermic mixture in the coating, Weld. Int. 30(9) (2016) 717-722. https://doi.org/10.1080/09507116.2016.1143586.
DOI: 10.1080/09507116.2016.1143586
Google Scholar
[39]
G.P. Bolotov, M.G. Bolotov, S.M. Yushchenko, Stabilization of a high-current glow discharge under the welding conditions. In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (2018, April) 521-525. https://doi.org/10.1109/ ELNANO.2018.8477494.
DOI: 10.1109/elnano.2018.8477494
Google Scholar
[40]
A.D. Razmyshlyaev, M.V. Mironova, A.A. Deli, Speed of metal flows in the pool in arc surfacing in a longitudinal magnetic field, Weld. Int. 24(8) (2010) 627-630. https://doi.org/10.1080/09507111003655531.
DOI: 10.1080/09507111003655531
Google Scholar
[41]
I. Krivtsun, U. Reisgen, O. Semenov, A. Zabirov, Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+CO2-laser) welding, J. Laser Appl. 28 (2016) 022406. https://doi.org/10.2351/1.4943994.
DOI: 10.2351/1.4943994
Google Scholar
[42]
T. Tsumura, F.X. Ye, T. Murakami, H. Nakajima, K. Nakata, Prediction of laser fusion zone profile of lotus-type porous metals by 3D heat transfer analysis. Solid State Phenom. 127 (2007) 307-312. https://doi.org/10.4028/www.scientific.net/SSP.127.307.
DOI: 10.4028/www.scientific.net/ssp.127.307
Google Scholar
[43]
L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets, O. Bushma, Crack resistance of 14KhGN2MDAFB high-strength steel joints manufactured by laser welding, IOP Conf. Ser. Earth Environ. Sci. 224(1) (2019) 012013.
DOI: 10.1088/1755-1315/224/1/012013
Google Scholar
[44]
O.T. Ola, F.E. Doern, Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques, Mater. Des. 77 (2015) 50-58. https://doi.org/10.1016/j.matdes.2015.03.064.
DOI: 10.1016/j.matdes.2015.03.064
Google Scholar
[45]
V. Shelyagin, V. Khaskin, A. Bernatskyi, A. Siora, V. Sydorets, D. Chinakhov, Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints, Mater. Sci. Forum 927 (2018) 64-71. https://doi.org/10.4028/www.scientific.net/MSF.927.64.
DOI: 10.4028/www.scientific.net/msf.927.64
Google Scholar
[46]
L. Markashova, O. Berdnikova, T. Alekseienko, A. Bernatskyi, V. Sydorets, Nanostructures in welded joints and their interconnection with operation properties. In Advances in Thin Films, Nanostructured Materials, and Coatings (2019) 119-128. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_12.
DOI: 10.1007/978-981-13-6133-3_12
Google Scholar
[47]
G. Turichin, I. Tsibulskiy, M. Kuznetsov, A. Akhmetov, M. Mildebrath, T. Hassel, Influence of the gap width on the geometry of the welded joint in hybrid laser-arc welding, Phys. Procedia 78 (2015) 14-23. https://doi.org/10.1016/j.phpro.2015.11.013.
DOI: 10.1016/j.phpro.2015.11.013
Google Scholar
[48]
V. Kovalenko, L. Golovko, J. Meijer, M. Anyakin, New developments in laser sintering of diamond cutting disks, CIRP annals 56(1) (2007) 189-192. https://doi.org/10.1016/ j.cirp.2007.05.046.
DOI: 10.1016/j.cirp.2007.05.046
Google Scholar
[49]
G. Turichin, E. Zemlyakov, K. Babkin, S. Ivanov, A. Vildanov, Analysis of distortion during laser metal deposition of large parts, Procedia CIRP 74 (2018) 154-157. https://doi.org/10.1016/j.procir.2018.08.068.
DOI: 10.1016/j.procir.2018.08.068
Google Scholar
[50]
S. Salii, M. Bloshchytsyn, W. Alnusirat, L. Golovko. Development of the laser-foundry process for manufacture of bimetals, EEJET 4(1(94)) (2018) 47-55. https://doi.org/ 10.15587/1729-4061.2018.139483.
DOI: 10.15587/1729-4061.2018.139483
Google Scholar
[51]
G. Turichin, O. Velichko, A. Kuznetsov, J. Pevzner, O. Grinin, M. Kuznetsov, Design of mobile hybrid laser-arc welding system on the base of 20 kW fiber laser, In 2014 International Conference Laser Optics (2014, June) 14544911. https://doi.org/ 10.1109/LO.2014.6886481.
DOI: 10.1109/lo.2014.6886481
Google Scholar
[52]
I. Bunaziv, O. Akselsen, J. Frostevarg, A. Kaplan, Laser-arc hybrid welding of thick HSLA steel, J. Mater. Process. Technol. 259 (2018) 75-87. https://doi.org/10.1016/ j.jmatprotec.2018.04.019.
DOI: 10.1016/j.jmatprotec.2018.04.019
Google Scholar
[53]
P. Kah, A. Salminen, J. Martikainen, The effect of the relative location of laser beam with arc in different hybrid welding processes, Mechanics 83(3) (2010) 68-74. https://doi.org/10.5755/j01.mech.83.3.15543.
DOI: 10.2351/1.5061539
Google Scholar
[54]
I. Bunaziv, O. Akselsen, A. Salminen, A. Unt, Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy, J. Mater. Process. Technol. 233 (2016) 107-114. https://doi.org/10.1016/ j.jmatprotec.2016.02.018.
DOI: 10.1016/j.jmatprotec.2016.02.018
Google Scholar
[55]
I. Klochkov, A. Poklaytsky, S. Motrunich, Fatigue behavior of high strength Al-Cu-Mg and Al-Cu-Li alloys joints obtained by fusion and solid state welding technologies, Journal of Theoretical and Applied Mechanics (Bulgaria) 49(2) (2019)179-189.
DOI: 10.7546/jtam.49.19.02.07
Google Scholar
[56]
G. Turichin, M. Kuznetsov, A. Pozdnyakov, S. Gook, A. Gumenyuk, M. Rethmeier, Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel, Procedia CIRP 74 (2018) 748-751. https://doi.org/10.1016/j.procir.2018.08.018.
DOI: 10.1016/j.procir.2018.08.018
Google Scholar
[57]
I. Bunaziv, J. Frostevarg, O. Akselsen, A. Kaplan, Hybrid welding of 45 mm high strength steel sections, Physics Procedia 89 (2017) 11-22. https://doi.org/10.1016/j.phpro.2017.08.006.
DOI: 10.1016/j.phpro.2017.08.006
Google Scholar
[58]
A.I. Romantsov, M.A. Fedorov, D.G. Lodkov, Austenite decomposition kinetics in laser-hybrid welding of steel of strength class K52, Mater. Sci. Forum 946 (2019) 950-955. https://doi.org/10.4028/www.scientific.net/MSF.946.950.
DOI: 10.4028/www.scientific.net/msf.946.950
Google Scholar
[59]
Ö. Üstündag, V. Avilov, A. Gumenyuk, M. Rethmeier, Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support, J. Phys. Conf. Ser. 1109(1) (2018) 012015. https://doi.org/10.1088/1742-6596/1109/1/012015.
DOI: 10.1088/1742-6596/1109/1/012015
Google Scholar
[60]
I. Bunaziv, C. Dorum, X. Ren, M. Eriksson, O. Akselsen, Application of LBW and LAHW for fillet welds of 12 and 15 mm structural steel, Procedia Manufact. 36 (2019) 121-130. https://doi.org/10.1016/j.promfg.2019.08.017.
DOI: 10.1016/j.promfg.2019.08.017
Google Scholar