Pore Formation during Laser Welding in Different Spatial Positions

Article Preview

Abstract:

The process of formation of pores, cavities and similar defects in welded joints of stainless steels and aluminum alloys, affecting their quality, directly depends on spatial weld position in laser welding. Reducing the angle of inclination from 90° to 0° during downhill and uphill welding of AISI 321 stainless steel in the pulse mode of laser generation leads to an increase in both the number of pores and their size. At the same time, defects in the form of pores are not observed in the continuous mode of laser generation. In laser welding of butt joints of AISI 321 steel, the flat and vertical weld positions are the most promising, as they provide the highest level of quality. In order to provide a stable formation of a high-quality butt joint of aluminum AMg6M alloy and to prevent the failure of laser equipment, the welding process should be carried out in a vertical uphill weld position.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 303)

Pages:

47-58

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Viňáš, M. Ábel, Analysis of laser welds on automotive steel sheets, Mater. Sci. Forum 818 (2015) 239-242. https://doi.org/10.4028/www.scientific.net/MSF.818.239.

DOI: 10.4028/www.scientific.net/msf.818.239

Google Scholar

[2] K.T. Lee, C.S. Park, H.Y. Kim, Fatigue and buckling analysis of automotive components considering forming and welding effects, Int. J. Automot. Technol. 18(1) (2017) 97-102. https://doi.org/10.1007/s12239-017-0010-z.

DOI: 10.1007/s12239-017-0010-z

Google Scholar

[3] A. Kovács, Integrated task sequencing and path planning for robotic remote laser welding, Int. J. Prod. Res., 54(4) (2016) 1210-1224. https://doi.org/10.1080/00207543.2015.1057626.

DOI: 10.1080/00207543.2015.1057626

Google Scholar

[4] S.N. Larin, V.I. Platonov, G.A. Nuzgdin, Technological exercise of cell structure forming, Key Eng. Mater. 736 (2017) 122-126. https://doi.org/10.4028/www.scientific.net/ KEM.736.122.

DOI: 10.4028/www.scientific.net/kem.736.122

Google Scholar

[5] T. Slezak, L. Sniezek, Fatigue life of welded joints of high-strength structural steel S960QL, Solid State Phenom. 250 (2016) 169-174. https://doi.org/10.4028/www.scientific.net/ SSP.250.169.

DOI: 10.4028/www.scientific.net/ssp.250.169

Google Scholar

[6] R. Rajan, P. Kah, B. Mvola, J. Martikainen, Trends in aluminium alloy development and their joining methods, Rev. Adv. Mater. Sci. 44(4) (2016). 383-397.

Google Scholar

[7] A. F. І. Idan, O. Akimov, L. Golovko, O. Goncharuk, K. Kostyk, The study of the influence of laser hardening conditions on the change in properties of steels, EEJET 2(5(80)) (2016) 69-73.

DOI: 10.15587/1729-4061.2016.65455

Google Scholar

[8] H.T. Kashani, P. Kah, J. Martikainen, Laser overlap welding of zinc-coated steel on aluminum alloy, Phys. Procedia, 78 (2015) 265-271. https://doi.org/10.1016/ j.phpro.2015.11.037.

DOI: 10.1016/j.phpro.2015.11.037

Google Scholar

[9] V. Dzhemelinskyi, D. Lesyk, О. Goncharuk, О. Dаnylеikо, Surface hardening and finishing of metallic products by hybrid laser-ultrasonic treatment, EEJET 1(12(91)) (2018) 35-42. https://doi.org/10.15587/1729-4061.2018.124031.

DOI: 10.15587/1729-4061.2018.124031

Google Scholar

[10] L.M. Lobanov, V.I. Kyr'yan, V.V Knysh, Enhancement of the service life of welded metal structures by high-frequency mechanical peening, Mater. Sci. 42(1) (2006) 54-60. https://doi.org/10.1007/s11003-006-0057-x.

DOI: 10.1007/s11003-006-0057-x

Google Scholar

[11] V.V. Knysh, S.O. Solovei, S.O. Osadchuk, L.I. Nyrkova, Influence of hardening by high-frequency mechanical impacts of butt welded joints made of 15KhSND steel on their atmospheric corrosion and fatigue fracture resistance, Mater. Sci. 54(3) (2018) 421-429. https://doi.org/10.1007/s11003-018-0201-4.

DOI: 10.1007/s11003-018-0201-4

Google Scholar

[12] G. Costanza, M.E. Tata, D. Cioccari, Explosion welding: process evolution and parameters optimization, Mater. Sci. Forum 941 (2018) 1558-1564. https://doi.org/10.4028/ www.scientific.net/MSF.941.1558.

DOI: 10.4028/www.scientific.net/msf.941.1558

Google Scholar

[13] O. Berdnikova, V. Pozniakov, A. Bernatskyi, T. Alekseienko, V. Sydorets, Effect of the structure on the mechanical properties and cracking resistance of welded joints of low-alloyed high-strength steels, Procedia Struct. Integrity 16 (2019) 89-96. https://doi.org/10.1016/j.prostr.2019.07.026.

DOI: 10.1016/j.prostr.2019.07.026

Google Scholar

[14] V.V. Kvasnitskii, V.D. Kuznetsov, Y.F. Ivanov, A.D. Teresov, L.I. Markashova, V.F. Kvasnitskii, A high-current electron beam application for the surface modification of iron, stainless steel, and heat resistant alloys, Surf. Eng. Appl. Electrochem. 45(3) (2009) 180-185. https://doi.org/10.3103/S1068375509030028.

DOI: 10.3103/s1068375509030028

Google Scholar

[15] S. Ivanov, E. Zemlyakov, K. Babkin, G. Turichin, I. Karpov, V. Em, S. Rylov, Stress distribution in laser metal deposited multi-layer thick-walled parts of Ti-6Al-4V, Procedia Manuf. 36 (2019) 240-248. https://doi.org/10.1016/j.promfg.2019.08.031.

DOI: 10.1016/j.promfg.2019.08.031

Google Scholar

[16] D.V. Laukhin, O.V. Beketov, N.O. Rott, I.A. Tyuterev, S.V. Ivantsov, V.D. Laukhin, The analysis of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture, Metallofiz. Noveishie Tekhnol. 39(10) (2017) 1335-1343 https://doi.org/10.15407/mfint.39.10.1335.

DOI: 10.15407/mfint.39.10.1335

Google Scholar

[17] O. Goncharuk, R. Zhuk, O. Kaglyak, V. Dzhemelinskyi, D. Lesyk, Laser sintering of abrasive layers with inclusions of cubic boron nitride grains, Lasers Manuf. Mater. Process. 5(3) (2018) 298-316. https://doi.org/10.1007/s40516-018-0068-0.

DOI: 10.1007/s40516-018-0068-0

Google Scholar

[18] D. Laukhin, O. Beketov, N. Rott, A. Schudro, The elaboration of modernized technology of controlled rolling directed at the formation of high strengthening and viscous qualities in HSLA steel, Solid State Phenom. 291 (2019) 13-19. https://doi.org/10.4028/ www.scientific.net/SSP.291.13.

DOI: 10.4028/www.scientific.net/ssp.291.13

Google Scholar

[19] D. Reitemeyer, Laser welding of large scale stainless steel aircraft structures, Phys. Procedia 41 (2013) 106-111. https://doi.org/10.1016/j.procir.2018.08.151.

DOI: 10.1016/j.phpro.2013.03.057

Google Scholar

[20] A.V. Bernatskyi, O.M. Berdnikova, I.M. Klochkov, V.M. Sydorets, D.A. Chinakhov. Laser welding in different spatial positions of T-joints of austenitic steel. IOP Conf. Ser. Mater. Sci. Eng., 582 (2019) 012048. https://doi.org/10.1088/1757-899X/582/1/012048.

DOI: 10.1088/1757-899x/582/1/012048

Google Scholar

[21] P. Vasantharaja, M. Vasudevan, P. Palanichamy, Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints, J. Manuf. Processes 19 (2015) 187-193. https://doi.org/10.1016/j.jmapro.2014.09.004.

DOI: 10.1016/j.jmapro.2014.09.004

Google Scholar

[22] R. Ilyushenko, V. Nesterenkov, Novel technique for joining of thick section difficult-to-weld aluminium alloys, Mat. Sci. Forum 519-521 (2006) 1125-1130. doi:10.4028/ www.scientific.net/MSF.519-521.1125.

DOI: 10.4028/www.scientific.net/msf.519-521.1125

Google Scholar

[23] O. Nazarenko, V. Nesterenkov, R. Ilyushenko, Weldability of aircraft aluminum alloys of great thickness in EBW, Avtomaticheskaya Svarka (8) (2005) 25-30.

Google Scholar

[24] R. Lin, H.P. Wang, F. Lu, J. Solomon, B.E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, Int. J. Heat Mass. Transfer 108 (2017) 244-256. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.019.

DOI: 10.1016/j.ijheatmasstransfer.2016.12.019

Google Scholar

[25] O.M. Ivasishin, S.V. Akhonin, D.G. Savvakin, V.A. Berezos, V.I. Bondarchuk, O.O. Stasyuk, P.E. Markovsky, Effect of microstructure, deformation mode and rate on mechanical behaviour of electron-beam melted Ti-6Al-4V and Ti-1.5Al-6.8Mo-4.5Fe alloys, Prog. Phys. Met., 19(3) (2018) 309-336. https://doi.org/10.15407/ufm.19.03.309.

DOI: 10.15407/ufm.19.03.309

Google Scholar

[26] S.V. Akhonin, R.N. Mishchenko, I.K. Petrichenko, Investigation of the weldability of titanium alloys produced by different methods of melting, Mater. Sci. 42 (2006) 323-329. https://doi.org/10.1007/s11003-006-0086-5.

DOI: 10.1007/s11003-006-0086-5

Google Scholar

[27] O.F. Bondarenko, I.V. Bondarenko, P.S. Safronov, V.M. Sydorets, Current and force control in micro resistance welding machines: Review and development. 2013 8th International Conference-Workshop on Compatibility and Power Electronics (CPE 2013) Ljubljana, 5-7 June 2013. IEEE, Ljubljana, pp.298-303. https://doi.org/10.1109/CPE.2013.6601173.

DOI: 10.1109/cpe.2013.6601173

Google Scholar

[28] A.I. Ustinov, Y.V. Falchenko, A.Y. Ishchenko, G.K. Kharchenko, T.V. Melnichenko, A.N. Muraveynik, Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics 16(8) (2008) 1043-1045. https://doi.org/10.1016/j.intermet.2008.05.002.

DOI: 10.1016/j.intermet.2008.05.002

Google Scholar

[29] J. Adamiec, R. Kocurek, Effect of autogenous laser weld on microstructure and mechanical properties of Inconel 617 nickel alloy, Solid State Phenom. 226 (2015) 43-46. https://doi.org/10.4028/www.scientific.net/SSP.226.43.

DOI: 10.4028/www.scientific.net/ssp.226.43

Google Scholar

[30] V.M. Nesterenkov, Y.V. Orsa, K.S. Khripko, Renewal of elements and construction units of gas turbine engines by means EBW, IOP Conf. Ser. Mater. Sci. Eng. 582(1) (2019) 012049. https://doi.org/10.1088/1757-899X/582/1/012049.

DOI: 10.1088/1757-899x/582/1/012049

Google Scholar

[31] P. Kah, J. Martikainen, Current trends in welding processes and materials: improve in effectiveness, Rev. Adv. Mater. Sci. 30(2) (2012) 189-200.

Google Scholar

[32] A.D. Razmyshlyayev, M.V. Mironova, S.V. Yarmonov, P.A. Vydmysh, The speed of flows in the pool in arc welding in a transverse magnetic field, Weld. Int. 29(4) (2015) 296-300. https://doi.org/10.1080/09507116.2014.921376.

DOI: 10.1080/09507116.2014.921376

Google Scholar

[33] V.V. Chigarev, N.A. Makarenko, O.H. Hryn, S.H. Plis, D.M. Holub, Gas-slag-forming system of flux-cored wires for plasma-MIG building-up welding, Int. J. Eng. Res. Africa 33 (2017) 35-39. https://doi.org/10.4028/www.scientific.net/JERA.33.35.

DOI: 10.4028/www.scientific.net/jera.33.35

Google Scholar

[34] P. Kah, M. Pirinen, R. Suoranta, J. Martikainen, Welding of ultra high strength steels, Adv. Mater. Res. 849 (2014) 357-365. https://doi.org/10.4028/www.scientific.net/AMR.849.357.

DOI: 10.4028/www.scientific.net/amr.849.357

Google Scholar

[35] A.F. Vlasov, N.A. Makarenko, A.M. Kushchiy, Using exothermic mixtures in manual arc welding and electroslag processes, Weld. Int. 31(7) (2017) 565-570. https://doi.org/10.1080/09507116.2017.1295561.

DOI: 10.1080/09507116.2017.1295561

Google Scholar

[36] A.D. Razmyshlyaev, M.V. Ahieieva, Features of arc surfacing process in a longitudinal magnetic field, Appl. Mech. Mater. 682 (2014) 313-318. https://doi.org/10.4028/ www.scientific.net/AMM.682.313.

DOI: 10.4028/www.scientific.net/amm.682.313

Google Scholar

[37] D.P. Il'Yaschenko, D.A. Chinakhov, Y.M. Gotovschik, Investigating the influence of the power supply type upon the properties of the weld joints under manual arc welding, Adv. Mater. Res. 1040 (2014) 837-844). https://doi.org/10.4028/www.scientific.net/AMR.1040.837.

DOI: 10.4028/www.scientific.net/amr.1040.837

Google Scholar

[38] A.F. Vlasov, N.A. Makarenko, Special features of heating and melting electrodes with an exothermic mixture in the coating, Weld. Int. 30(9) (2016) 717-722. https://doi.org/10.1080/09507116.2016.1143586.

DOI: 10.1080/09507116.2016.1143586

Google Scholar

[39] G.P. Bolotov, M.G. Bolotov, S.M. Yushchenko, Stabilization of a high-current glow discharge under the welding conditions. In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (2018, April) 521-525. https://doi.org/10.1109/ ELNANO.2018.8477494.

DOI: 10.1109/elnano.2018.8477494

Google Scholar

[40] A.D. Razmyshlyaev, M.V. Mironova, A.A. Deli, Speed of metal flows in the pool in arc surfacing in a longitudinal magnetic field, Weld. Int. 24(8) (2010) 627-630. https://doi.org/10.1080/09507111003655531.

DOI: 10.1080/09507111003655531

Google Scholar

[41] I. Krivtsun, U. Reisgen, O. Semenov, A. Zabirov, Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+CO2-laser) welding, J. Laser Appl. 28 (2016) 022406. https://doi.org/10.2351/1.4943994.

DOI: 10.2351/1.4943994

Google Scholar

[42] T. Tsumura, F.X. Ye, T. Murakami, H. Nakajima, K. Nakata, Prediction of laser fusion zone profile of lotus-type porous metals by 3D heat transfer analysis. Solid State Phenom. 127 (2007) 307-312. https://doi.org/10.4028/www.scientific.net/SSP.127.307.

DOI: 10.4028/www.scientific.net/ssp.127.307

Google Scholar

[43] L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets, O. Bushma, Crack resistance of 14KhGN2MDAFB high-strength steel joints manufactured by laser welding, IOP Conf. Ser. Earth Environ. Sci. 224(1) (2019) 012013.

DOI: 10.1088/1755-1315/224/1/012013

Google Scholar

[44] O.T. Ola, F.E. Doern, Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques, Mater. Des. 77 (2015) 50-58. https://doi.org/10.1016/j.matdes.2015.03.064.

DOI: 10.1016/j.matdes.2015.03.064

Google Scholar

[45] V. Shelyagin, V. Khaskin, A. Bernatskyi, A. Siora, V. Sydorets, D. Chinakhov, Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints, Mater. Sci. Forum 927 (2018) 64-71. https://doi.org/10.4028/www.scientific.net/MSF.927.64.

DOI: 10.4028/www.scientific.net/msf.927.64

Google Scholar

[46] L. Markashova, O. Berdnikova, T. Alekseienko, A. Bernatskyi, V. Sydorets, Nanostructures in welded joints and their interconnection with operation properties. In Advances in Thin Films, Nanostructured Materials, and Coatings (2019) 119-128. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_12.

DOI: 10.1007/978-981-13-6133-3_12

Google Scholar

[47] G. Turichin, I. Tsibulskiy, M. Kuznetsov, A. Akhmetov, M. Mildebrath, T. Hassel, Influence of the gap width on the geometry of the welded joint in hybrid laser-arc welding, Phys. Procedia 78 (2015) 14-23. https://doi.org/10.1016/j.phpro.2015.11.013.

DOI: 10.1016/j.phpro.2015.11.013

Google Scholar

[48] V. Kovalenko, L. Golovko, J. Meijer, M. Anyakin, New developments in laser sintering of diamond cutting disks, CIRP annals 56(1) (2007) 189-192. https://doi.org/10.1016/ j.cirp.2007.05.046.

DOI: 10.1016/j.cirp.2007.05.046

Google Scholar

[49] G. Turichin, E. Zemlyakov, K. Babkin, S. Ivanov, A. Vildanov, Analysis of distortion during laser metal deposition of large parts, Procedia CIRP 74 (2018) 154-157. https://doi.org/10.1016/j.procir.2018.08.068.

DOI: 10.1016/j.procir.2018.08.068

Google Scholar

[50] S. Salii, M. Bloshchytsyn, W. Alnusirat, L. Golovko. Development of the laser-foundry process for manufacture of bimetals, EEJET 4(1(94)) (2018) 47-55. https://doi.org/ 10.15587/1729-4061.2018.139483.

DOI: 10.15587/1729-4061.2018.139483

Google Scholar

[51] G. Turichin, O. Velichko, A. Kuznetsov, J. Pevzner, O. Grinin, M. Kuznetsov, Design of mobile hybrid laser-arc welding system on the base of 20 kW fiber laser, In 2014 International Conference Laser Optics (2014, June) 14544911. https://doi.org/ 10.1109/LO.2014.6886481.

DOI: 10.1109/lo.2014.6886481

Google Scholar

[52] I. Bunaziv, O. Akselsen, J. Frostevarg, A. Kaplan, Laser-arc hybrid welding of thick HSLA steel, J. Mater. Process. Technol. 259 (2018) 75-87. https://doi.org/10.1016/ j.jmatprotec.2018.04.019.

DOI: 10.1016/j.jmatprotec.2018.04.019

Google Scholar

[53] P. Kah, A. Salminen, J. Martikainen, The effect of the relative location of laser beam with arc in different hybrid welding processes, Mechanics 83(3) (2010) 68-74. https://doi.org/10.5755/j01.mech.83.3.15543.

DOI: 10.2351/1.5061539

Google Scholar

[54] I. Bunaziv, O. Akselsen, A. Salminen, A. Unt, Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy, J. Mater. Process. Technol. 233 (2016) 107-114. https://doi.org/10.1016/ j.jmatprotec.2016.02.018.

DOI: 10.1016/j.jmatprotec.2016.02.018

Google Scholar

[55] I. Klochkov, A. Poklaytsky, S. Motrunich, Fatigue behavior of high strength Al-Cu-Mg and Al-Cu-Li alloys joints obtained by fusion and solid state welding technologies, Journal of Theoretical and Applied Mechanics (Bulgaria) 49(2) (2019)179-189.

DOI: 10.7546/jtam.49.19.02.07

Google Scholar

[56] G. Turichin, M. Kuznetsov, A. Pozdnyakov, S. Gook, A. Gumenyuk, M. Rethmeier, Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel, Procedia CIRP 74 (2018) 748-751. https://doi.org/10.1016/j.procir.2018.08.018.

DOI: 10.1016/j.procir.2018.08.018

Google Scholar

[57] I. Bunaziv, J. Frostevarg, O. Akselsen, A. Kaplan, Hybrid welding of 45 mm high strength steel sections, Physics Procedia 89 (2017) 11-22. https://doi.org/10.1016/j.phpro.2017.08.006.

DOI: 10.1016/j.phpro.2017.08.006

Google Scholar

[58] A.I. Romantsov, M.A. Fedorov, D.G. Lodkov, Austenite decomposition kinetics in laser-hybrid welding of steel of strength class K52, Mater. Sci. Forum 946 (2019) 950-955. https://doi.org/10.4028/www.scientific.net/MSF.946.950.

DOI: 10.4028/www.scientific.net/msf.946.950

Google Scholar

[59] Ö. Üstündag, V. Avilov, A. Gumenyuk, M. Rethmeier, Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support, J. Phys. Conf. Ser. 1109(1) (2018) 012015. https://doi.org/10.1088/1742-6596/1109/1/012015.

DOI: 10.1088/1742-6596/1109/1/012015

Google Scholar

[60] I. Bunaziv, C. Dorum, X. Ren, M. Eriksson, O. Akselsen, Application of LBW and LAHW for fillet welds of 12 and 15 mm structural steel, Procedia Manufact. 36 (2019) 121-130. https://doi.org/10.1016/j.promfg.2019.08.017.

DOI: 10.1016/j.promfg.2019.08.017

Google Scholar