[1]
I. A. Bataev, D. O. Mul, A. A. Bataev, O. G.Lenivtseva, M. G. Golkovski, Ya. S. Lizunkova, R. A. Dostovalov, Structure and tribological properties of steel after non-vacuum electron beam cladding of Ti, Mo and graphite powders, Mater. Charact. 112 (2016) 60–67.
DOI: 10.1016/j.matchar.2015.11.028
Google Scholar
[2]
I. A. Bataev, M. G. Golkovskii, A. A. Bataev, A. A. Losinskaya, R. A. Dostovalov, A. I. Popelyukh, E. A. Drobyaz, Surface hardening of steels with carbon by non-vacuum electron-beam processing, Surf. Coat. Technol. 242 (2014) 164–169.
DOI: 10.1016/j.surfcoat.2014.01.038
Google Scholar
[3]
I. A. Bataev, M. G. Golkovskii, A. A. Losinskaya, A. A. Bataev, A. I. Popelyukh, T. Hassel, D. D. Golovin, Non-vacuum electron-beam carburizing and surface hardening of mild steel, Appl. Surf. Sci. 322 (2014) 6–14.
DOI: 10.1016/j.apsusc.2014.09.137
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva, Structure of surface layers produced by non-vacuum electron beam boriding, Appl. Surf. Sci. 284 (2013) 472–481.
DOI: 10.1016/j.apsusc.2013.07.121
Google Scholar
[5]
D. O. Mul, D. S. Krivezhenko, D. B. Lazurenko, O. G. Lenivtseva, A. A. Chevakinskaya, Structure and properties of coatings obtained by electron-beam cladding of Ti+C and Ti+B4C powder mixtures on steel specimens at air atmosphere, Adv. Mater. Res. 1040 (2014) 778–783.
DOI: 10.4028/www.scientific.net/amr.1040.778
Google Scholar
[6]
I. A. Bataev, A. A. Bataev, M. G. Golkovski, A. Yu. Teplykh, V. G. Burov, S. V. Veselov, Non-vacuum electron-beam boriding of low-carbon steel, Surf. Coat. Technol. 207 (2012), 245–253.
DOI: 10.1016/j.surfcoat.2012.06.081
Google Scholar
[7]
I. M. Poletika, S. A. Makarov, T. A. Krylova, M. G. Golkovskii, Using the Cr–C–B systems for alloying metal by in out-of-vacuum electron beam surfacing, Welding Int. 26 (2012), 776–781.
DOI: 10.1080/09507116.2011.653160
Google Scholar
[8]
I. M. Poletika, T. A. Krylova, M. V. Tetyutskaya, S. A. Makarov, Formation of the structure of wear-resisting coatings in electron beam deposition of tungsten carbide, Welding Int. 27 (2013), 508–515.
DOI: 10.1080/09507116.2012.715946
Google Scholar
[9]
V.G. Burov, I.A. Bataev, A.G. Tyurin, S.V. Veselov, Structure and properties of WC-Co coatings obtained on steel substrates by liquid state sintering in vacuum, Surf. Eng. 31 (2015) 540-544.
DOI: 10.1179/1743294414y.0000000415
Google Scholar
[10]
I. M. Poletika, S. F. Ivanov, S. F. Gnyusov, M. V. Perovskaya, Electron-beam deposition of chromium carbide–based coatings with an ultradispersed structure or a nanostructure, Russ. Metall. 2016 (2016), 1275–1282.
DOI: 10.1134/s0036029516130127
Google Scholar
[11]
T. A. Krylova, K. V. Ivanov, V. E. Ovcharenko, Structure, phase composition and hardness of coatings obtained by high-energy electron beam cladding of a mixture of Cr3C2 and TiC powders on low-carbon steel, Inorg. Mater.: Appl. Res. 10 (2019), 595–599.
DOI: 10.1134/s2075113319030201
Google Scholar
[12]
T. A. Krylova, K. V. Ivanov, V. E. Ovcharenko, The structure, microhardness and wear resistance of coatings obtained through non-vacuum electron beam cladding of chromium and titanium carbides on low carbon steel, Mater. Sci. Forum 927 (2018), 13–19.
DOI: 10.4028/www.scientific.net/msf.927.13
Google Scholar