Analysis of Thermal Processes during Friction Stir Welding of Metals

Article Preview

Abstract:

Developed was a computer model of temperature field in the tool and parts in the process of their friction stir welding (FSW). Modeling of the temperature field was carried out for both successive stages of welding process, i.e. plunging of pin of tool working element into the part (1st stage) and progressive motion of plunged pin in the part (2nd stage). The mathematical model represents a nonlinear equation of transient heat conduction, which takes into account progressive pin movement during the 2nd stage of welding. Two constituents describe the heat sources, appearing in welding. The first one considers power of heat sources, caused by friction of the tool with the parts on contact surfaces, the second one takes into account heat generation, promoted by mechanical deformation of the part material. Mathematical modeling and experimental examination of temperature field were carried out for tool from cubic boron nitride (cubonit) and hard alloy in copper parts during FSW. Adequacy of the developed model was determined based on correlation of numerical and experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 303)

Pages:

67-78

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.St. Węglowski, S. Błacha, A. Phillips, Electron beam welding – Techniques and trends – Review, Vacuum. 130 (2016) 72-92.

DOI: 10.1016/j.vacuum.2016.05.004

Google Scholar

[2] R. Ilyushenko, V. Nesterenkov, Novel technique for joining of thick section difficult-to-weld aluminium alloys, Mater. Sci. Forum 519-521 (2006) 1125-1130.

DOI: 10.4028/www.scientific.net/msf.519-521.1125

Google Scholar

[3] S.V. Akhonin, V.Yu. Belous, R.V. Selin, Electron beam welding, heat treatment and hardening of beta-titanium, IOP Conf. Ser. Mater. Sci. Eng. 582 (2019) 012050.

DOI: 10.1088/1757-899x/582/1/012050

Google Scholar

[4] S. Katayama (Ed.), Handbook of laser welding technologies, Woodhead Publishing Ltd, Cambridge, (2013).

Google Scholar

[5] C. Mittelstädt, T. Seefeld, P. Woizeschke, F. Vollertsen, Laser welding of hidden T-joints with lateral beam oscillation, Procedia CIRP 74 (2018) 456-460.

DOI: 10.1016/j.procir.2018.08.151

Google Scholar

[6] A.V. Bernatskyi, O.M. Berdnikova, I.M. Klochkov, V.M. Sydorets, D.A. Chinakhov, Laser welding in different spatial positions of T-joints of austenitic steel, IOP Conf. Ser. Mater. Sci. Eng. 582 (2019) P. 012048.

DOI: 10.1088/1757-899x/582/1/012048

Google Scholar

[7] L. Markashova, O. Berdnikova, A. Bernatskyi, M. Iurzhenko, V. Sydorets, Physical and mechanical properties of high-strength steel joints produced by laser welding, in: 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), IEEE, Lviv, 2017, pp.88-91.

DOI: 10.1109/ysf.2017.8126596

Google Scholar

[8] L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets, O. Bushma, Crack resistance of 14KhGN2MDAFB high-strength steel joints manufactured by laser welding, IOP Conf. Ser. Earth Environ. Sci. 224 (2019) 012013.

DOI: 10.1088/1755-1315/224/1/012013

Google Scholar

[9] V. Shelyagin, V. Khaskin, A. Bernatskyi, O. Siora, V.N. Sydorets, D.A. Chinakhov, Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints, Mater. Sci. Forum 927 (2018) 64-71.

DOI: 10.4028/www.scientific.net/msf.927.64

Google Scholar

[10] O. Berdnikova, V. Pozniakov, A. Bernatskyi, T. Alekseienko, V. Sydorets, Effect of the structure on the mechanical properties and cracking resistance of welded joints of low-alloyed high-strength steels, Procedia Structural Integrity 16 (2019) 89-96.

DOI: 10.1016/j.prostr.2019.07.026

Google Scholar

[11] I. Krivtsun, U. Reisgen, O. Semenov, A. Zabirov, Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+CO2-laser) welding, J. Laser Appl. 28 (2016) 022406.

DOI: 10.2351/1.4943994

Google Scholar

[12] V. Sydorets, V. Korzhyk, V. Khaskin, O. Babych, O. Berdnikova, On the thermal and electrical characteristics of the hybrid plasma-MIG welding process. Mater. Sci. Forum 906 (2017) 63-71.

DOI: 10.4028/www.scientific.net/msf.906.63

Google Scholar

[13] V. Korzhyk, V. Khaskin, O. Voitenko, V. Sydorets, O. Dolianovskaia, Welding technology in additive manufacturing processes of 3D objects, Mater. Sci. Forum 906 (2017) 121-130.

DOI: 10.4028/www.scientific.net/msf.906.121

Google Scholar

[14] A.I. Ustinov, Y.V. Falchenko, A.Y. Ishchenko, G.K. Kharchenko, T.V. Melnichenko, A.N. Muraveynik, Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system, Intermetallics 16 (2008) 1043-1045.

DOI: 10.1016/j.intermet.2008.05.002

Google Scholar

[15] P. Nachtnebl, L. Kolařík, L. Forejtová, Testing methods for diffusion welding, Mater. Sci. Forum 919 (2018) 404-410.

DOI: 10.4028/www.scientific.net/msf.919.404

Google Scholar

[16] A.I. Ustinov, I.V. Falchenko, T.V. Melnychenko, L.V. Petrushynets, K.V. Liapina, A.E. Shishkin, Diffusion welding through vacuum-deposited porous interlayers, J. Mater. Process. Technol. 247 (2017) 268-279.

DOI: 10.1016/j.jmatprotec.2017.04.029

Google Scholar

[17] Y. Wei, H. Li, F. Sun, J. Zou, The interfacial characterization and performance of Cu/Al-conductive heads processed by explosion welding, cold pressure welding, and solid-liquid casting, Metals 9 (2019) 237.

DOI: 10.3390/met9020237

Google Scholar

[18] G. Costanza, M.E. Tata, D. Cioccari, Explosion welding: process evolution and parameters optimization, Mater. Sci. Forum 941 (2018) 1558-1564.

DOI: 10.4028/www.scientific.net/msf.941.1558

Google Scholar

[19] J.H. Bevington, Spinning Tubes, U.S. Patent 444,721. (1891).

Google Scholar

[20] K.K. Khrenov, G.P. Sakhatsky, Method of cold welding of metal parts. SU Patent 97,024 (1953).

Google Scholar

[21] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction stir butt welding, Int. Patent PCT/GB92/02203; G.B. Patent 9,125,978.8; U.S. Patent 5,460,317 (1991).

Google Scholar

[22] M.M. Shtrikman, State and development of the process of friction welding of linear joints (review), Svarochnoe Proizvodstvo 10 (2007) 25-32.

Google Scholar

[23] R.J. Ding, P.A. Oelgoetz, Auto-adjustable pin tool for friction stir welding, U.S. Patent 5,893,507A (1999).

Google Scholar

[24] R.S. Mishra, M.W. Mahoney (Eds.), Friction Stir Welding and Processing, ASM Int., Materials Park, (2007).

Google Scholar

[25] R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Sci. Technol. Weld. Joi. 16(4) (2011) 325-342.

DOI: 10.1179/1362171811y.0000000023

Google Scholar

[26] R.J. Steel, J. Peterson, S. Sanderson, P. Higgins, S.M. Packer, Friction Stir Welding of 20 mm Thickness 1018 Steels, Proc. Twenty-second Int. Offshore and Polar Eng. Conf., Rhodes, Greece, June 17-22, ISOPE, Rhodes, 2012, pp.238-243.

Google Scholar

[27] G. Buffa, L. Fratini, R. Shivpuri, Finite element studies on friction stir welding process of tailored blanks, Comput. Struct. 86 (2008) 181-189.

DOI: 10.1016/j.compstruc.2007.04.007

Google Scholar

[28] R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy. Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia 55 (2007) 883-895.

DOI: 10.1016/j.actamat.2006.09.009

Google Scholar

[29] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev. 54(2) (2009) 49-93.

DOI: 10.1179/174328009x411136

Google Scholar

[30] N.T. Kumbhar, K. Bhanumurthy, Friction Stir Welding of Al 6061 Alloy, Asian J. Exp. Sci. 22(2) (2008) 63-74.

Google Scholar

[31] D. Carron, P. Bastid, Y. Yin, R.G. Faulkner, Modelling of precipitation during friction stir welding of an Al-Mg-Si alloy, Tech. Mech. 30(1-3) (2010) 29-44.

Google Scholar

[32] A. Bastier, M.H. Maitournam, K. van Dang, F. Roger, Steady state thermomechanical modelling of friction stir welding, Sci. Technol. Weld. Joi. 11 (2006) 278-288.

DOI: 10.1179/174329306x102093

Google Scholar

[33] A.V. Yakimov, P.T. Slobodyanik, A.V. Usov, Thermophysics of machining, Lybid, Kiev-Odessa, (1991).

Google Scholar

[34] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction stir welding – Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[35] A.L. Maistrenko, V.A. Dutka, V.P. Pereyaslav, S.A. Ivanov, Mathematical modeling of the thermal state of technological unit elements during high-rate electric sintering of diamond-containing composite materials, Sverkhtverdye Materialy 4 (1999) 26-35.

Google Scholar

[36] A.A. Shulzhenko, S.A. Bozhko, A.N. Sokolov, et al., Synthesis, sintering and properties of cubic boron nitride, Naukova dumka, Kiev, (1993).

Google Scholar

[37] N.B. Vargafnik, Themophysical properties of substances: Reference Book, Tekhnoenergoizdat, Moscow-Leningrad, (1956).

Google Scholar

[38] V.K. Grigorovich (Ed.) Reference book on steels and their testing methods, Metallurgizdat, Moscow, (1958).

Google Scholar

[39] V.I. Tumanov, Properties of alloys of tungsten carbide-cobalt system, Metallurgia, Moscow, (1971).

Google Scholar

[40] Information on http://www.cniga.com.ua/index.files/cuprum.htm.

Google Scholar

[41] I.K. Kikoin (Ed.), Tables of physical values: Reference book, Atomizdat, Moscow, (1976).

Google Scholar

[42] V.A. Grigorjev, V.I. Zorin (Eds.), Heat- and mass transfer. Thermal engineering experiment: Reference book, Energoizdat, Moscow, (1982).

Google Scholar

[43] R.K. Uyyuru, S.V. Kailas, Numerical analysis of friction stir welding process, J. Mater. Eng. Perform. 15(5) (2006) 505-518.

DOI: 10.1361/105994906x136070

Google Scholar

[44] G. Buffa, L. Fratini, F. Micari, L. Settineri, On the choice of tool material in friction stir welding of titanium alloys, Proc. NAMRI/SME 40 (2012) 1-10.

Google Scholar

[45] N.V. Novikov, A.A. Shulzhenko, N.P. Bezhenar, et al., Kiborit: manufacture, structure, properties, application, Sverkhtverdye Materialy 2 (2001) 40-51.

Google Scholar