Phase State Diagrams of a Four-Component System Al-Si-N-O - Analysis of the Thermodynamic Stability of Sialon Compounds Dased on Energy Crystal-Chemistry

Article Preview

Abstract:

The paper presents the results of the analysis of the state diagram of compounds in the system А12O3-SiO2. It has been found that the presence and the concentration of oxygen have a very important effect on formation of compounds with a crystalline structure in different syngony based on SIALON. Oxygen contributes to transition of the metastable AlXSi3-XN4compound into stable one. The parameter of structural “friability” of compounds has been used in the analysis of thethermodynamic stability of compounds in the Al-Si-N-O system. It has been foundthat the SiAl4O2N4 compound with the 12H-SIALON structure (Pearson symbol hP32) has the greatest thermodynamic stability among the compounds under study in this system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 303)

Pages:

97-103

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MacKeenzie K G D, Brown I W M, White G V and Eur J 1996Ceram. Soc.V16115-17.

Google Scholar

[2] Zhuravleva NV, Lukin E.S. 1993 RefractoriesV1 6–11.

Google Scholar

[3] Bowen NL, Greig JW1924J. Am. Ceram. Soc. V7 238-54.

Google Scholar

[4] Toropov NA, Galakhov FY 1958Izv. Academy of Sciences of the USSR V1 8–11.

Google Scholar

[5] Aramaki S, Roy R 1962J. Am. Ceram. Soc. V45 229-42.

Google Scholar

[6] Ban T, Hayashi S, Yasumori A and Okada K1996 J. Mater. Res V11 1421-27.

Google Scholar

[7] Zhang С, Zhang F, Cao WS, Chang YA 2010 Intermetallics V18 1419-27.

Google Scholar

[8] AksayA I Pask J A 1975 J. Am. Ceram. Soc. V58 507-12.

Google Scholar

[9] Chung J H, Jeong H R. 2012 Ceramics International V38 4601-06.

Google Scholar

[10] NeshporI.P, Panasyuk A D, Pshenichnaya O V. 2014 Powder Metallurgy and Metal Ceramics V53 7-8.

Google Scholar

[11] Chen ZY 2005 Beijing Metallurgical Industry Press.

Google Scholar

[12] Cao G Z, Metselaar R1991Chem. Mater V3 242–52.

Google Scholar

[13] PartheE1964Gordon and Breach Science Publisher (New York) pp.109-11.

Google Scholar

[14] Jack KH, Wilson WJ 1972Nature Phys. Sci.V238 28-3.

Google Scholar

[15] Jack KH,1976 J. Mat. Sci. V11 1135-58.

Google Scholar

[16] AsakaT, Kudo T,BannoH, FunahashiS and HirosakiN 2013 Powder Diffr V28 171-77.

Google Scholar

[17] Asaka T, Banno H, Funahashi S, and Hirosaki N 2013 Solid State Chem.V204 21-6.

Google Scholar

[18] Zuev VV, Kotcheueva LN, Goncharov Y D 2006 Chemistry and Physics of Metals (St. Petersburg LLC ALPHAPOL,) p.139.

Google Scholar

[19] Pearson W B1972 The Crystal Chemistry and Physics of Metals and Alloys ( New York: Wiley-Interscience)p.806.

Google Scholar

[20] Panneerselvam M, Rao KJ2003 Mater. Res.B38 663-74.

Google Scholar

[21] GrigorievON, Dubovik TV, Vinokurov VB and Kotenko VА 2009Refractories and technical ceramics V2 10-5.

Google Scholar

[22] Toropov NA, Andreev IF, OrlovVA. 1970 Inorganic Materials V6  991-94.

Google Scholar

[23] Van Dijen FK, Metselaar R, Helmholdt RB 1987J.ofMat. Sci. Let. V6  1101-02.

Google Scholar

[24] Khvatinskaya DY, Em VT andLoryan VE., 1991   InorganicMaterialsV27 1805-07.

Google Scholar

[25] Perelyaev VA,Alyamovskii SI, Miroshnikova LD and Fedyukov AS 1988. Inorganic MaterialsV24 799-01.

Google Scholar

[26] Gillott L,Cowlam N, Bacon GE 1981 J. Mat. Sci. V16 2263-68.

Google Scholar

[27] Banno H,Asaka T, Fukuda K.2014 Journal of Solid State Chemistry V213 169-75.

Google Scholar

[28] Banno H,Hanai T,Asaka T, Kimoto K, Nakano H and Fukuda K.2014 Powder Diffraction  V29 318-24.

Google Scholar

[29] Banno H,Hanai T,Asaka T, Kimoto K and Fukuda K 2014 Journal of Solid State Chemistry.V211 124-29.

Google Scholar

[30] Lindqvist O,Sjöberg J, Hull S,Pompe R 1991   Structural ScienceB47 672-78.

Google Scholar