[1]
L. Lu, J. Fuh, Y. Wong, Laser Induseed Materials and Processes for Rapid Prototyping, Kluwer Publishers, Dordrecht, (2001).
Google Scholar
[2]
I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, Springer New York Heidelberg Dordrecht London, (2010).
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[3]
K.V. Wong, A. Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering (2012).
Google Scholar
[4]
W. Cao, Y. Miyamoto, Direct Slicing from AutoCAD Solid Models for Rapid Prototyping, The International Journal of Advanced Manufacturing Technology 21/10 (2003) 739–742.
DOI: 10.1007/s00170-002-1316-0
Google Scholar
[5]
L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer aided design in Selective Laser Sintering (SLS) – application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
Google Scholar
[6]
L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Szindler, A. Achtelik-Franczak, W. Pakieła, Atomic layer deposition of TiO2 on to porous biomaterials, Journal of Achievements in Materials and Manufacturing Engineering 75/1 (2015) 5-11.
DOI: 10.5772/intechopen.70491
Google Scholar
[7]
Ch. Achillas, D. Aidonis, E. Iakovou, M. Thymianidis, D. Tzetzis, A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory, Journal of Manufacturing Systems 37/1 (2015) 328-339.
DOI: 10.1016/j.jmsy.2014.07.014
Google Scholar
[8]
K.V. Wong, A. Hernandez, A Review of Additive Manufacturing, International Scholarly Research Network (2012).
Google Scholar
[9]
H. El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, McGraw-Hill Education, (2005).
Google Scholar
[10]
A.D. Lantada, A. Blas, R.A. Blas, R.M. Schwentenwein, M. Schwentenwein, C. Jellinek, J. Homa, Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges, Smart Materials and Structures 25/5 (2016) 1-10.
DOI: 10.1088/0964-1726/25/5/054015
Google Scholar
[11]
B.E. Kelly, I. Bhattacharya, H. Heidari1, M Shusteff, C.M. Spadaccini, H.K. Taylor1, Volumetric additive manufacturing via tomographic reconstruction, Science 363/6431 (2019) 1-5.
DOI: 10.1126/science.aau7114
Google Scholar
[12]
T.D. Ngo, A. Kashani, G. Imbalzano, K. T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering 143 (2018) 172-196.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[13]
I.J. Polmear, Light Alloys, From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, (2005).
Google Scholar
[14]
H. Dong, Surface engineering of light alloys: Aluminium, magnesium and titanium alloy, Woodhead Publishing Ltd., Cambridge, (2010).
Google Scholar
[15]
L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B Dobrzański, A. Achtelik-Franczak, Fabrication of Scaffolds from Ti6Al4V Powders Using the Computer Aided Laser Method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.
DOI: 10.1515/amm-2015-0260
Google Scholar
[16]
L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.
DOI: 10.1515/amm-2015-0346
Google Scholar
[17]
M. J. Donachie, S. J. Donachie, Superalloys a Technical Guide, ASM International, Materials Park, Ohio, (2002).
Google Scholar
[18]
H. Shin, S. Jo, A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials 24/24 (2003) 353–4364.
DOI: 10.1016/s0142-9612(03)00339-9
Google Scholar
[19]
T. Farrell, Superalloy materials now cost competitive in vacuum furnace hot-zone construction, Industrial Heating 72/9 (2005) 129-133.
Google Scholar
[20]
J. Sieniawski, Criteria and methods of evaluation of the components of turbine aircraft engines, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, (1995).
Google Scholar
[21]
C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical Applications of Titanium and its Alloys, Overview Biological Materials Science 60/3 (2008) 46-49.
DOI: 10.1007/s11837-008-0031-1
Google Scholar
[22]
I. Zein, D.W. Hutmacher, K.Ch. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials 23/4 (2002) 1169-1185.
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[23]
S. S. Crump, J. W. Comb, W. R. Priedeman, R. L. Zinniel, Process of support removal for fused deposition modeling, US5503785 A (1994).
Google Scholar
[24]
Al C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R. C. Advincula, High performance polymer nanocomposites for additive manufacturing applications, Reactive and Functional Polymers 103 (2016) 141-155.
DOI: 10.1016/j.reactfunctpolym.2016.04.010
Google Scholar
[25]
E.M. Sachs, J.S. Haggerty, M.J. Cima, P.A. Williams, Three-dimensional printing techniques, US5204055 A (1993).
Google Scholar
[26]
H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 74B/2 (2005) 782-788.
DOI: 10.1002/jbm.b.30291
Google Scholar
[27]
B. Utela, D. Storti, R. Anderson, M. Ganter, A review of process development steps for new material systems in three dimensional printing (3DP), Journal of Manufacturing Processes 10/ 2 (2008) 96-104.
DOI: 10.1016/j.jmapro.2009.03.002
Google Scholar
[28]
Y.S. Liao, L.C. Chiu, Y.Y. Chiu, A new approach of online waste removal process for laminated object manufacturing (LOM), Journal of Materials Processing Technology 140/ 1–3 (2003) 136-140.
DOI: 10.1016/s0924-0136(03)00690-3
Google Scholar
[29]
A.K. Sridharan, S. Joshi, An octree-based algorithm for the optimization of extraneous material removal in laminated object manufacturing (LOM), Journal of Manufacturing Systems 19/ 6 (2001) 355-364.
DOI: 10.1016/s0278-6125(01)80007-8
Google Scholar
[30]
J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials 3/3 (2010) 249-259.
DOI: 10.1016/j.jmbbm.2009.10.006
Google Scholar
[31]
L.E. Murr, Sara M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology 28/1 ( 2012) 1-14.
DOI: 10.1016/s1005-0302(12)60016-4
Google Scholar
[32]
J. Wang, A. Goyanes, S. Gaisford, A. W. Basit, Stereolithographic (SLA) 3D printing of oral modified-release dosage forms, International Journal of Pharmaceutics 503/1-2 (2016) 207-212.
DOI: 10.1016/j.ijpharm.2016.03.016
Google Scholar
[33]
D.T. Pham, C. Ji, Design for stereolithography, Proceedings of the Institution of Mechanical Engineers, Journal of Mechanical Engineering Science Part C/214.5 (2000) 635-640.
DOI: 10.1243/0954406001523650
Google Scholar
[34]
P. Duc, S.S. Dimov, Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer Science & Business Media, (2012).
Google Scholar
[35]
B. Bidanda, P. Bartolo, Virtual Prototyping & Bio Manufacturing in Medical Applications, Springer Science+Business Media & Business Media, (2008).
Google Scholar
[36]
H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, The International Journal of Advanced Manufacturing Technology 83/1 (2016) 1-17.
DOI: 10.1007/s00170-015-7576-2
Google Scholar
[37]
S.R. Rathod, A review on rapid prototyping as advanced manufacturing technology, International Journal of Pure and Applied Research in Engineering and Technology 3/9 (2015) 310-319.
Google Scholar
[38]
F. Ning, W. Cong, Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process, Materials Letters 179/15 (2016) 61-64.
DOI: 10.1016/j.matlet.2016.05.055
Google Scholar
[39]
R.S. Amano, P.K. Rohatgi, Laser engineered net shaping process for SAE 4140 low alloy steel, Materials Science and Engineering A 528/22–23(2011) 6680-6693.
DOI: 10.1016/j.msea.2011.05.036
Google Scholar
[40]
M.N. Hafsa, M. Ibrahim, S. Sharif, M.F.M. Omar, M.A. Zainol, Evaluation of Different Internal Structure and Build Orientation for Multijet Modeling Process, Applied Mechanics and Materials 315 (2013) 587-591.
DOI: 10.4028/www.scientific.net/amm.315.587
Google Scholar
[41]
F. Zhu, J. Skommer, N.P. Macdonald, T. Friedrich, J. Kaslin, D. Wlodkowic, Three-dimensional printed millifluidic devices for zebrafish embryo tests, Biomicrofluidics 9/4 (2015) 1-10.
DOI: 10.1063/1.4927379
Google Scholar
[42]
B. Wendel, D. Rietzel, F. Kühnlein, R. Feulner, G. Hülder, E. Schmachtenberg, Additive Processing of Polymers, Macromolecular Materials and Engineering 293/10 (2008) 799–809.
DOI: 10.1002/mame.200800121
Google Scholar
[43]
D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies, International Journal of Machine Tools and Manufacture 10–11 (1998) 1257-1287.
DOI: 10.1016/s0890-6955(97)00137-5
Google Scholar
[44]
M. Srivastava, U. Singh, R. Yashaswi, Trends in the domain of rapid rototyping: a review, International Journal of Mechanical Sciences 3/3 (2014) 747-762.
Google Scholar
[45]
D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, Mechanical properties and cell cultural response of polycaprolactone skafolds designed and fabricated via fused deposition modeling, Journal of Biomedical Materials Research 55/2 (2001) 203-216.
DOI: 10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7
Google Scholar
[46]
R.R. Unocic, J.N. DuPont, Process efficiency measurements in the laser engineered net shaping process, Metallurgical and Materials Transactions B 35/1 (2004) 143-152.
DOI: 10.1007/s11663-004-0104-7
Google Scholar
[47]
J. Park, M.J. Tari, H. T. Hahn, Characterization of the laminated object manufacturing (LOM) process, Rapid Prototyping Journal 6/1 (2000) 36-50.
DOI: 10.1108/13552540010309868
Google Scholar
[48]
J. Winder, R. Bibb, Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial Surgery 63/7 (2005) 1006-1015.
DOI: 10.1016/j.joms.2005.03.016
Google Scholar
[49]
D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyping Journal 10/1 (2004) 35-41.
DOI: 10.1108/13552540410512516
Google Scholar
[50]
N. Guo, M.C. Leu, Frontiers of Mechanical Engineering, Additive manufacturing: Technology, Applications and Research Needs 8/3 (2013) 215-248.
Google Scholar
[51]
G. Ryan, A. Pandit, D. P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27/ 13 (2006) 2651-2670.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[52]
L.A. Dobrzański, Ł. Reimann, Digitization procedure of creating 3D model of dental bridgework reconstruction, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 469-476.
Google Scholar
[53]
T. Huang, M.S. Mason, G.E. Hilmas, M.C. Leu, Freeze-form Extrusion Fabrication of Ceramics, Virtual and Physical Prototyping 1/2 (2006) 93-100.
DOI: 10.1080/17452750600649609
Google Scholar
[54]
M.C. Leu, L.Tang, B. Deuser, R. G. Landers, G. E. Hilmas, S. Zhang, J. Watts, Freeze-form extrusion fabrication of composite structures, in: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX (2001) 111-124.
DOI: 10.1016/j.cirp.2012.03.050
Google Scholar
[55]
Tieshu Huang, Michael S. Mason, Xiyue Zhao, Gregory E. Hilmas, Ming C. Leu, Aqueous‐based freeze‐form extrusion fabrication of alumina components, Rapid Prototyping Journal 15/2 (2009) 55-95.
DOI: 10.1108/13552540910943388
Google Scholar
[56]
A. Renteria, J.A. Diaz, B. He, I.A. Renteria-Marquez, L.A. Chavez, J.E. Regis, Y. Liu, D. Espalin, T.L. Tseng, Y. Lin, Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing Materials Research Express 11/6 (2019)1-9.
DOI: 10.1088/2053-1591/ab4a36
Google Scholar
[57]
K. Satish Prakash, T. Nancharaih, V.V. Subba Rao, Additive Manufacturing Techniques in Manufacturing -An Overview, Materials Today: Proceedings, 5/2 (2018) 3873-3882.
DOI: 10.1016/j.matpr.2017.11.642
Google Scholar
[58]
N. Martelli, C. Serrano, H. Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review, Surgery, 159/6 (2016) 1485-1500.
DOI: 10.1016/j.surg.2015.12.017
Google Scholar
[59]
A. Bandyopadhyay, S. Bose, Additive Manufacturing, CRC Press Taylor & Francis Group, Boca Raton, (2019).
Google Scholar
[60]
A.J. Pinkerton, Lasers in additive manufacturing, Optics & Laser Technology, 78/A (2016) 25-32.
Google Scholar
[61]
D. Pranzo, P. Larizza, D. Filippini, G. Percoco, Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review, Micromachines 9/8 (2018) 1-27.
DOI: 10.3390/mi9080374
Google Scholar
[62]
H. Kadry, S. Wadnap, C. Xu, F. Ahsan, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets, European Journal of Pharmaceutical Sciences, 135 (2019) 60-67.
DOI: 10.1016/j.ejps.2019.05.008
Google Scholar
[63]
S. Lantean, I. Roppolo, M. Sangermano, C. F. Pirri, A. Chiappone, Development of New Hybrid Acrylic/Epoxy DLP-3D Printable Materials, Inventions 3/2 (2018) 1-13.
DOI: 10.3390/inventions3020029
Google Scholar
[64]
X. Wang, Q. Ao, X. Tian, J. Fan, Y. Wei, W. Hou, H. Tong, S. Bai, 3D Bioprinting Technologies for Hard Tissue and Organ Engineering, Materials 9/10 (2016) 1-23.
DOI: 10.3390/ma9100802
Google Scholar
[65]
G.W. Bishop, J.E. Satterwhite-Warden, K. Kadimisetty, J.F. Rusling, 3D-printed bioanalytical devices, Nanotechnology 27 (2016) 1-8.
DOI: 10.1088/0957-4484/27/28/284002
Google Scholar
[66]
B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, H.K. Taylor, Volumetric additive manufacturing via tomographic reconstruction, Science 363/6431 (2019) 1-5.
DOI: 10.1126/science.aau7114
Google Scholar
[67]
J. Garden, Additive manufacturing technologies: state of the art and trends, International Journal of Production Research 54/10 (2016) 3118-3132.
Google Scholar
[68]
S. Legutko, Additive techniques of manufacturing functional products from metal materials, IOP Conference Series: Materials Science and Engineering, 393 (2018) 1-8.
DOI: 10.1088/1757-899x/393/1/012003
Google Scholar
[69]
A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51/3 (2013) 245-256.
DOI: 10.1007/s11517-012-1001-x
Google Scholar
[70]
L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct Metal Laser Sintering of Ti-6Al-4V, Materials and Design 31 (2010) 3982-3988.
DOI: 10.1016/j.matdes.2010.02.050
Google Scholar
[71]
I. Shishkovsky, V. Scherbakov, Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine, Physics Procedia 39 (2012) 491-499.
DOI: 10.1016/j.phpro.2012.10.065
Google Scholar
[72]
S. Nachum, J. Vogt, F. Raether, Additive Manufacturing of Ceramics: Stereolithography versus Binder Jetting, Ceramic forum international: CFI. Berichte der Deutschen Keramischen Gesellschaft 93/3 (2016) E27-E33.
Google Scholar
[73]
https://www.okuma.com/mu-8000v-laser-ex.
Google Scholar
[74]
A. D. Lantada, A. B Romero, M. Schwentenwein, C. Jellinek J. Homa, Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges, Smart Materials and Structures 25/5 (2016) 1-10.
DOI: 10.1088/0964-1726/25/5/054015
Google Scholar
[75]
E.Schwarzer, M.Götz, D.Markova, D.Stafford, U.Scheithauer, T.Moritz, Lithography-based ceramic manufacturing (LCM) – Viscosity and cleaning as two quality influencing steps in the process chain of printing green parts, Journal of the European Ceramic Society 37/16 (2017) 5329-5338.
DOI: 10.1016/j.jeurceramsoc.2017.05.046
Google Scholar