Review of Additive Manufacturing Methods

Article Preview

Abstract:

The manuscript reviews the additive manufacturing technology. The principle of operation of the most popular and new AM methods was discussed. the manuscript presents the possibility of skewing different materials for individual technologies. Additive manufacturing technologies have been described that can manufacture parts from polymers, metals, ceramics and composites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

1-20

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Lu, J. Fuh, Y. Wong, Laser Induseed Materials and Processes for Rapid Prototyping, Kluwer Publishers, Dordrecht, (2001).

Google Scholar

[2] I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, Springer New York Heidelberg Dordrecht London, (2010).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[3] K.V. Wong, A. Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering (2012).

Google Scholar

[4] W. Cao, Y. Miyamoto, Direct Slicing from AutoCAD Solid Models for Rapid Prototyping, The International Journal of Advanced Manufacturing Technology 21/10 (2003) 739–742.

DOI: 10.1007/s00170-002-1316-0

Google Scholar

[5] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer aided design in Selective Laser Sintering (SLS) – application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.

Google Scholar

[6] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Szindler, A. Achtelik-Franczak, W. Pakieła, Atomic layer deposition of TiO2 on to porous biomaterials, Journal of Achievements in Materials and Manufacturing Engineering 75/1 (2015) 5-11.

DOI: 10.5772/intechopen.70491

Google Scholar

[7] Ch. Achillas, D. Aidonis, E. Iakovou, M. Thymianidis, D. Tzetzis, A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory, Journal of Manufacturing Systems 37/1 (2015) 328-339.

DOI: 10.1016/j.jmsy.2014.07.014

Google Scholar

[8] K.V. Wong, A. Hernandez, A Review of Additive Manufacturing, International Scholarly Research Network (2012).

Google Scholar

[9] H. El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, McGraw-Hill Education, (2005).

Google Scholar

[10] A.D. Lantada, A. Blas, R.A. Blas, R.M. Schwentenwein, M. Schwentenwein, C. Jellinek, J. Homa, Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges, Smart Materials and Structures 25/5 (2016) 1-10.

DOI: 10.1088/0964-1726/25/5/054015

Google Scholar

[11] B.E. Kelly, I. Bhattacharya, H. Heidari1, M Shusteff, C.M. Spadaccini, H.K. Taylor1, Volumetric additive manufacturing via tomographic reconstruction, Science 363/6431 (2019) 1-5.

DOI: 10.1126/science.aau7114

Google Scholar

[12] T.D. Ngo, A. Kashani, G. Imbalzano, K. T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering 143 (2018) 172-196.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[13] I.J. Polmear, Light Alloys, From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, (2005).

Google Scholar

[14] H. Dong, Surface engineering of light alloys: Aluminium, magnesium and titanium alloy, Woodhead Publishing Ltd., Cambridge, (2010).

Google Scholar

[15] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B Dobrzański, A. Achtelik-Franczak, Fabrication of Scaffolds from Ti6Al4V Powders Using the Computer Aided Laser Method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.

DOI: 10.1515/amm-2015-0260

Google Scholar

[16] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.

DOI: 10.1515/amm-2015-0346

Google Scholar

[17] M. J. Donachie, S. J. Donachie, Superalloys a Technical Guide, ASM International, Materials Park, Ohio, (2002).

Google Scholar

[18] H. Shin, S. Jo, A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials 24/24 (2003) 353–4364.

DOI: 10.1016/s0142-9612(03)00339-9

Google Scholar

[19] T. Farrell, Superalloy materials now cost competitive in vacuum furnace hot-zone construction, Industrial Heating 72/9 (2005) 129-133.

Google Scholar

[20] J. Sieniawski, Criteria and methods of evaluation of the components of turbine aircraft engines, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, (1995).

Google Scholar

[21] C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical Applications of Titanium and its Alloys, Overview Biological Materials Science 60/3 (2008) 46-49.

DOI: 10.1007/s11837-008-0031-1

Google Scholar

[22] I. Zein, D.W. Hutmacher, K.Ch. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials 23/4 (2002) 1169-1185.

DOI: 10.1016/s0142-9612(01)00232-0

Google Scholar

[23] S. S. Crump, J. W. Comb, W. R. Priedeman, R. L. Zinniel, Process of support removal for fused deposition modeling, US5503785 A (1994).

Google Scholar

[24] Al C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R. C. Advincula, High performance polymer nanocomposites for additive manufacturing applications, Reactive and Functional Polymers 103 (2016) 141-155.

DOI: 10.1016/j.reactfunctpolym.2016.04.010

Google Scholar

[25] E.M. Sachs, J.S. Haggerty, M.J. Cima, P.A. Williams, Three-dimensional printing techniques, US5204055 A (1993).

Google Scholar

[26] H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 74B/2 (2005) 782-788.

DOI: 10.1002/jbm.b.30291

Google Scholar

[27] B. Utela, D. Storti, R. Anderson, M. Ganter, A review of process development steps for new material systems in three dimensional printing (3DP), Journal of Manufacturing Processes 10/ 2 (2008) 96-104.

DOI: 10.1016/j.jmapro.2009.03.002

Google Scholar

[28] Y.S. Liao, L.C. Chiu, Y.Y. Chiu, A new approach of online waste removal process for laminated object manufacturing (LOM), Journal of Materials Processing Technology 140/ 1–3 (2003) 136-140.

DOI: 10.1016/s0924-0136(03)00690-3

Google Scholar

[29] A.K. Sridharan, S. Joshi, An octree-based algorithm for the optimization of extraneous material removal in laminated object manufacturing (LOM), Journal of Manufacturing Systems 19/ 6 (2001) 355-364.

DOI: 10.1016/s0278-6125(01)80007-8

Google Scholar

[30] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials 3/3 (2010) 249-259.

DOI: 10.1016/j.jmbbm.2009.10.006

Google Scholar

[31] L.E. Murr, Sara M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology 28/1 ( 2012) 1-14.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[32] J. Wang, A. Goyanes, S. Gaisford, A. W. Basit, Stereolithographic (SLA) 3D printing of oral modified-release dosage forms, International Journal of Pharmaceutics 503/1-2 (2016) 207-212.

DOI: 10.1016/j.ijpharm.2016.03.016

Google Scholar

[33] D.T. Pham, C. Ji, Design for stereolithography, Proceedings of the Institution of Mechanical Engineers, Journal of Mechanical Engineering Science Part C/214.5 (2000) 635-640.

DOI: 10.1243/0954406001523650

Google Scholar

[34] P. Duc, S.S. Dimov, Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer Science & Business Media, (2012).

Google Scholar

[35] B. Bidanda, P. Bartolo, Virtual Prototyping & Bio Manufacturing in Medical Applications, Springer Science+Business Media & Business Media, (2008).

Google Scholar

[36] H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, The International Journal of Advanced Manufacturing Technology 83/1 (2016) 1-17.

DOI: 10.1007/s00170-015-7576-2

Google Scholar

[37] S.R. Rathod, A review on rapid prototyping as advanced manufacturing technology, International Journal of Pure and Applied Research in Engineering and Technology 3/9 (2015) 310-319.

Google Scholar

[38] F. Ning, W. Cong, Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process, Materials Letters 179/15 (2016) 61-64.

DOI: 10.1016/j.matlet.2016.05.055

Google Scholar

[39] R.S. Amano, P.K. Rohatgi, Laser engineered net shaping process for SAE 4140 low alloy steel, Materials Science and Engineering A 528/22–23(2011) 6680-6693.

DOI: 10.1016/j.msea.2011.05.036

Google Scholar

[40] M.N. Hafsa, M. Ibrahim, S. Sharif, M.F.M. Omar, M.A. Zainol, Evaluation of Different Internal Structure and Build Orientation for Multijet Modeling Process, Applied Mechanics and Materials 315 (2013) 587-591.

DOI: 10.4028/www.scientific.net/amm.315.587

Google Scholar

[41] F. Zhu, J. Skommer, N.P. Macdonald, T. Friedrich, J. Kaslin, D. Wlodkowic, Three-dimensional printed millifluidic devices for zebrafish embryo tests, Biomicrofluidics 9/4 (2015) 1-10.

DOI: 10.1063/1.4927379

Google Scholar

[42] B. Wendel, D. Rietzel, F. Kühnlein, R. Feulner, G. Hülder, E. Schmachtenberg, Additive Processing of Polymers, Macromolecular Materials and Engineering 293/10 (2008) 799–809.

DOI: 10.1002/mame.200800121

Google Scholar

[43] D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies, International Journal of Machine Tools and Manufacture 10–11 (1998) 1257-1287.

DOI: 10.1016/s0890-6955(97)00137-5

Google Scholar

[44] M. Srivastava, U. Singh, R. Yashaswi, Trends in the domain of rapid rototyping: a review, International Journal of Mechanical Sciences 3/3 (2014) 747-762.

Google Scholar

[45] D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, Mechanical properties and cell cultural response of polycaprolactone skafolds designed and fabricated via fused deposition modeling, Journal of Biomedical Materials Research 55/2 (2001) 203-216.

DOI: 10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7

Google Scholar

[46] R.R. Unocic, J.N. DuPont, Process efficiency measurements in the laser engineered net shaping process, Metallurgical and Materials Transactions B 35/1 (2004) 143-152.

DOI: 10.1007/s11663-004-0104-7

Google Scholar

[47] J. Park, M.J. Tari, H. T. Hahn, Characterization of the laminated object manufacturing (LOM) process, Rapid Prototyping Journal 6/1 (2000) 36-50.

DOI: 10.1108/13552540010309868

Google Scholar

[48] J. Winder, R. Bibb, Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial Surgery 63/7 (2005) 1006-1015.

DOI: 10.1016/j.joms.2005.03.016

Google Scholar

[49] D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyping Journal 10/1 (2004) 35-41.

DOI: 10.1108/13552540410512516

Google Scholar

[50] N. Guo, M.C. Leu, Frontiers of Mechanical Engineering, Additive manufacturing: Technology, Applications and Research Needs 8/3 (2013) 215-248.

Google Scholar

[51] G. Ryan, A. Pandit, D. P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27/ 13 (2006) 2651-2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[52] L.A. Dobrzański, Ł. Reimann, Digitization procedure of creating 3D model of dental bridgework reconstruction, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 469-476.

Google Scholar

[53] T. Huang, M.S. Mason, G.E. Hilmas, M.C. Leu, Freeze-form Extrusion Fabrication of Ceramics, Virtual and Physical Prototyping 1/2 (2006) 93-100.

DOI: 10.1080/17452750600649609

Google Scholar

[54] M.C. Leu, L.Tang, B. Deuser, R. G. Landers, G. E. Hilmas, S. Zhang, J. Watts, Freeze-form extrusion fabrication of composite structures, in: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX (2001) 111-124.

DOI: 10.1016/j.cirp.2012.03.050

Google Scholar

[55] Tieshu Huang, Michael S. Mason, Xiyue Zhao, Gregory E. Hilmas, Ming C. Leu, Aqueous‐based freeze‐form extrusion fabrication of alumina components, Rapid Prototyping Journal 15/2 (2009) 55-95.

DOI: 10.1108/13552540910943388

Google Scholar

[56] A. Renteria, J.A. Diaz, B. He, I.A. Renteria-Marquez, L.A. Chavez, J.E. Regis, Y. Liu, D. Espalin, T.L. Tseng, Y. Lin, Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing Materials Research Express 11/6 (2019)1-9.

DOI: 10.1088/2053-1591/ab4a36

Google Scholar

[57] K. Satish Prakash, T. Nancharaih, V.V. Subba Rao, Additive Manufacturing Techniques in Manufacturing -An Overview, Materials Today: Proceedings, 5/2 (2018) 3873-3882.

DOI: 10.1016/j.matpr.2017.11.642

Google Scholar

[58] N. Martelli, C. Serrano, H. Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review, Surgery, 159/6 (2016) 1485-1500.

DOI: 10.1016/j.surg.2015.12.017

Google Scholar

[59] A. Bandyopadhyay, S. Bose, Additive Manufacturing, CRC Press Taylor & Francis Group, Boca Raton, (2019).

Google Scholar

[60] A.J. Pinkerton, Lasers in additive manufacturing, Optics & Laser Technology, 78/A (2016) 25-32.

Google Scholar

[61] D. Pranzo, P. Larizza, D. Filippini, G. Percoco, Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review, Micromachines 9/8 (2018) 1-27.

DOI: 10.3390/mi9080374

Google Scholar

[62] H. Kadry, S. Wadnap, C. Xu, F. Ahsan, Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets, European Journal of Pharmaceutical Sciences, 135 (2019) 60-67.

DOI: 10.1016/j.ejps.2019.05.008

Google Scholar

[63] S. Lantean, I. Roppolo, M. Sangermano, C. F. Pirri, A. Chiappone, Development of New Hybrid Acrylic/Epoxy DLP-3D Printable Materials, Inventions 3/2 (2018) 1-13.

DOI: 10.3390/inventions3020029

Google Scholar

[64] X. Wang, Q. Ao, X. Tian, J. Fan, Y. Wei, W. Hou, H. Tong, S. Bai, 3D Bioprinting Technologies for Hard Tissue and Organ Engineering, Materials 9/10 (2016) 1-23.

DOI: 10.3390/ma9100802

Google Scholar

[65] G.W. Bishop, J.E. Satterwhite-Warden, K. Kadimisetty, J.F. Rusling, 3D-printed bioanalytical devices, Nanotechnology 27 (2016) 1-8.

DOI: 10.1088/0957-4484/27/28/284002

Google Scholar

[66] B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, H.K. Taylor, Volumetric additive manufacturing via tomographic reconstruction, Science 363/6431 (2019) 1-5.

DOI: 10.1126/science.aau7114

Google Scholar

[67] J. Garden, Additive manufacturing technologies: state of the art and trends, International Journal of Production Research 54/10 (2016) 3118-3132.

Google Scholar

[68] S. Legutko, Additive techniques of manufacturing functional products from metal materials, IOP Conference Series: Materials Science and Engineering, 393 (2018) 1-8.

DOI: 10.1088/1757-899x/393/1/012003

Google Scholar

[69] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51/3 (2013) 245-256.

DOI: 10.1007/s11517-012-1001-x

Google Scholar

[70] L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct Metal Laser Sintering of Ti-6Al-4V, Materials and Design 31 (2010) 3982-3988.

DOI: 10.1016/j.matdes.2010.02.050

Google Scholar

[71] I. Shishkovsky, V. Scherbakov, Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine, Physics Procedia 39 (2012) 491-499.

DOI: 10.1016/j.phpro.2012.10.065

Google Scholar

[72] S. Nachum, J. Vogt, F. Raether, Additive Manufacturing of Ceramics: Stereolithography versus Binder Jetting, Ceramic forum international: CFI. Berichte der Deutschen Keramischen Gesellschaft 93/3 (2016) E27-E33.

Google Scholar

[73] https://www.okuma.com/mu-8000v-laser-ex.

Google Scholar

[74] A. D. Lantada, A. B Romero, M. Schwentenwein, C. Jellinek J. Homa, Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges, Smart Materials and Structures 25/5 (2016) 1-10.

DOI: 10.1088/0964-1726/25/5/054015

Google Scholar

[75] E.Schwarzer, M.Götz, D.Markova, D.Stafford, U.Scheithauer, T.Moritz, Lithography-based ceramic manufacturing (LCM) – Viscosity and cleaning as two quality influencing steps in the process chain of printing green parts, Journal of the European Ceramic Society 37/16 (2017) 5329-5338.

DOI: 10.1016/j.jeurceramsoc.2017.05.046

Google Scholar