[1]
J.P. Kurth, Levy G., F. Klocke, T. Childs, Consolidation in laser and powder-bed based layered manufacturing, CIRP Ann Manuf Technol, 56(2007) 730-759.
DOI: 10.1016/j.cirp.2007.10.004
Google Scholar
[2]
S. Bose, D. Ke, H. Sahasrabudhe, and A. Bandyopadhyay, Additive manufacturing of biomaterials, Prog. Mater. Sci., 93(2018) 45–111.
DOI: 10.1016/j.pmatsci.2017.08.003
Google Scholar
[3]
A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol., 225(2015) 122–132.
DOI: 10.1016/j.jmatprotec.2015.05.008
Google Scholar
[4]
M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, Light extinction in metallic powder beds: Correlation with powder structure, J. Appl. Phys., 98(2005) 45-52.
DOI: 10.1063/1.1948509
Google Scholar
[5]
S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, I. J. Adv. Manuf. Technol, 67(2013) 1191-1203.
DOI: 10.1007/s00170-012-4558-5
Google Scholar
[6]
T. Duda and L. V. Raghavan, 3D Metal Printing Technology, IFAC-PapersOnLine, 49(2016) 103–110.
DOI: 10.1016/j.ifacol.2016.11.111
Google Scholar
[7]
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia. 4 (2016) 371–392.
DOI: 10.1016/j.actamat.2016.07.019
Google Scholar
[8]
W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge , C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges, Applied Physics Reviews, 2,(2015) 413-434.
DOI: 10.1063/1.4937809
Google Scholar
[9]
N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs Front. Mech. Eng., 8(2013), 215-243.
DOI: 10.1007/s11465-013-0248-8
Google Scholar
[10]
I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (second ed.), Springer, Berlin (2015).
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[11]
G.B. Kannan, D.K. Rajendran, A review on status of research in metal additive manufacturing Advances in 3D Printing & Additive Manufacturing Technologies, Springer, (2017) 95-100.
DOI: 10.1007/978-981-10-0812-2_8
Google Scholar
[12]
A.A. Shapiro, J.P. Borgonia, Q.N. Chen, R.P. Dillon, B. McEnerney, R. Polit-Casillas, L. Soloway, Additive manufacturing for aerospace flight applications, J. Spacecr. Rocket., 53 (2016) 952-959.
DOI: 10.2514/1.a33544
Google Scholar
[13]
A. G. Demir and B. Previtali, Additive manufacturing of cardiovascular CoCr stents by selective laser melting, Mater. Des., 119(2017) 338–350.
DOI: 10.1016/j.matdes.2017.01.091
Google Scholar
[14]
F.-H. Liu, Y.-K. Shen, and J.-L. Lee, Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro, Int. J. Precis. Eng. Manuf. 13(2012) 439–444.
DOI: 10.1007/s12541-012-0056-9
Google Scholar
[15]
Z.X. Khoo, J.E.M. Teoh, Y. Liu, C.K. Chua, S. Yang, J. An, K.F. Leong, W.Y. Yeonh, 3D printing of smart materials: a review on recent progresses in 4D printing, Virtual Phys. Prototyping, 10 (2015) 103-122.
DOI: 10.1080/17452759.2015.1097054
Google Scholar
[16]
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic impants: a review, Biomater. 83 (2016) 127-141.
DOI: 10.1016/j.biomaterials.2016.01.012
Google Scholar
[17]
N. Biswas, J.L. Ding, V.K. Balla, D.P. Field, A. Bandyopadhyay A., Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading, Mater. Sci. Eng. A Mater., 549 (2012) 213–221.
DOI: 10.1016/j.msea.2012.04.036
Google Scholar
[18]
X. Yan, Ch. Chen, R. Zhao, W. Ma, R. Bolot., J. Wang, Z. Ren, H. Liao, M. Liu, Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance, Surf. Coat. Technol, 371 (2019) 355-365.
DOI: 10.1016/j.surfcoat.2018.11.033
Google Scholar
[19]
Ch. Tan, K. Zhou., X. Tong, Y. Huang, J. Li, W. Ma, F. Li, T. Kuang, Microstructure and Mechanical Properties of 18Ni-300 Maraging Steel Fabricated by Selective Laser Melting, 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016).
DOI: 10.2991/icadme-16.2016.66
Google Scholar
[20]
I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, A three-dimensional finite element analysis of the tempearture filed during laser melting of metal powders in additive layer manufacturing, J. of Machine Tools and Manufacture, 49 (2009) 916-923.
DOI: 10.1016/j.ijmachtools.2009.07.004
Google Scholar
[21]
T.G., Spears, S.A. Gold, In-process sesing in selective laser melting (SLM) additve manufacturing, Springer, (2016) 1-25.
Google Scholar
[22]
M. Mani, B. Lane, A. Donmez, C.F. Shawn, R R. Fesperman, Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes, (2015).
DOI: 10.6028/nist.ir.8036
Google Scholar
[23]
I.Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 253 (2007) 8064–8069.
DOI: 10.1016/j.apsusc.2007.02.088
Google Scholar
[24]
P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardo, Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Mater 51(2003)1651–1662.
DOI: 10.1016/s1359-6454(02)00567-0
Google Scholar
[25]
K.A. Mumtaz, P. Erasenthiran, N. Hopkinson, High density selective laser melting of Waspaloy®. J Mater Process Technol, 195 (2008) 77–87.
DOI: 10.1016/j.jmatprotec.2007.04.117
Google Scholar
[26]
M. Tang, Ch. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf., 14(2017) 39-48.
DOI: 10.1016/j.addma.2016.12.001
Google Scholar
[27]
W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. 2 (2015) 1–26.
DOI: 10.1063/1.4937809
Google Scholar
[28]
C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg J. Mater. Process. Technol., 221 (2015) 112-120.
DOI: 10.1016/j.jmatprotec.2015.02.013
Google Scholar
[29]
M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS Rapid Prototyp. J., 20 (2014) 449-458.
DOI: 10.1108/rpj-03-2013-0028
Google Scholar
[30]
L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder Acta Mater. 61 (2013) 1809-1819.
DOI: 10.1016/j.actamat.2012.11.052
Google Scholar
[31]
M. Tang, P.C. Pistorius, J.L. Beuth Geometric model to predict porosity of part produced in powder bed system Materials Science and Technology (2015) 129-135.
Google Scholar
[32]
R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium J. Phys. D: Appl. Phys., 40 (2007) 5753-5766.
DOI: 10.1088/0022-3727/40/18/037
Google Scholar
[33]
J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering Assem. Autom., 23 (2003) 357-371.
DOI: 10.1108/01445150310698652
Google Scholar
[34]
S.A. Khairallah, A. Anderson Mesoscopic simulation model of selective laser melting of stainless steel powder J. Mater. Process. Technol., 214 (2014) 2627-263.
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[35]
F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers A pragmatic model for selective laser melting with evaporation, Acta Mater., 57 (2009) 6006-6012.
DOI: 10.1016/j.actamat.2009.08.027
Google Scholar
[36]
A. Suzuki, R. Nishida, N. Takata, M. Kobashi, M. Kato, Design of laser parameters for Selective laser melted maraging steel based on deposited Energy density, Additiv. Manuf., 28 (2019) 160-168.
DOI: 10.1016/j.addma.2019.04.018
Google Scholar
[37]
S. Coeck, M. Bisht, J. Plas, F. Verbist , Prediction of lask of fusion porosity in seective laser melting based on melt pool monitoring data, Additv. Manuf., vol. 25, 2019, str. 347-356.
DOI: 10.1016/j.addma.2018.11.015
Google Scholar
[38]
E. Liverani, S. Toschi, L. Ceschini, A. Fortuanto, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, Journal of material Processing Technology, 249(2017) 255-263.
DOI: 10.1016/j.jmatprotec.2017.05.042
Google Scholar
[39]
E. Cristofani, M. Becquaert, G Pandey, M. Vandewal, N. Deligiannis, J. Stiens., Compressed sensing and defect-based dictionaries for characteristics extraction in mm-wave non-destructive testing, International Conference on Infrared, Millimeter and Terahertz Waves, IRMMWTHz'16, (2016).
DOI: 10.1109/irmmw-thz.2016.7758678
Google Scholar
[40]
D. Gu, Y.C. Hadedorn, W. Meiner, G. Meng, R.J.S. Batista, K. Eissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium Atca Mater, 60(2012) 3849-3860.
DOI: 10.1016/j.actamat.2012.04.006
Google Scholar
[41]
H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commcercially puer titanium, Mater. Sciand. Engine:C. 593(2014) 170-177.
DOI: 10.1016/j.msea.2013.11.038
Google Scholar
[42]
Y.-L. Hao, S.-J. Li, R. Yang, Biomedical titanium alloys and their additive manufacturing, Rare Metals, 35(2016) 661-671.
DOI: 10.1007/s12598-016-0793-5
Google Scholar
[43]
D.A. Hollander, M. von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, H.-J. Erli, Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming, Biomaterials, 27(2006), 955-963.
DOI: 10.1016/j.biomaterials.2005.07.041
Google Scholar
[44]
V.K. Balla, S. Martinez, B.T. Rogoza, C. Livingston, D. Venkateswaran, S. Bose, A. Bandyopadhyay, Quasi-static torsional deformation behavior of porous Ti6Al4V alloy Mater. Sci. Eng. C, 31(2011) 945-949.
DOI: 10.1016/j.msec.2011.02.016
Google Scholar
[45]
V.T. Morgan, The effect of porosity on some of the physical properties of powder-metallurgy component, Powder Metall. (2014) 72-86.
Google Scholar
[46]
G. Kasperovich, J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, J. Mater. Process. Technol., 220 (2015) 202-214.
DOI: 10.1016/j.jmatprotec.2015.01.025
Google Scholar
[47]
T. Vilaro, C. Colin, J.D. BartoutAs-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A, 42 (10) (2011) 3190-3199.
DOI: 10.1007/s11661-011-0731-y
Google Scholar
[48]
C. Galy, E.L. Guen, E. Lacoste, C. Aivie, Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences, Addit. Manuf. 22(2018), 165-175.
DOI: 10.1016/j.addma.2018.05.005
Google Scholar
[49]
H. Gong, K. Rafi, H. Gu, T. Starr, B. Strucker, Analysis of the defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf. 1-4(2014) 87-98.
DOI: 10.1016/j.addma.2014.08.002
Google Scholar
[50]
R. M. Digilov, Prediction of surface properties of metals from the law of corresponding states, J. Cryst. Growth, 49 (2003 ) 363–371.
DOI: 10.1016/s0022-0248(02)02072-9
Google Scholar
[51]
L. Li, Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping, J. Mater. Sci., 41(2006), 7886–7893.
DOI: 10.1007/s10853-006-0948-0
Google Scholar
[52]
E.O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties, J. Mater. Process. Technol., 213 (2013) 1387-1405.
DOI: 10.1016/j.jmatprotec.2013.03.009
Google Scholar
[53]
E. Louvis, P. Fox, C.J. Sutcliffe Selective laser melting of aluminium components, J. Mater. Process. Technol. 211 (2011) 275-284.
DOI: 10.1016/j.jmatprotec.2010.09.019
Google Scholar
[54]
D. Tian, P. Tomus, X. Rometsch, WuInfluences of processing parameters on surface roughness of HastelloyX produced by selective laser melting, Addit. Manuf., 13 (2017) 103-112.
DOI: 10.1016/j.addma.2016.10.010
Google Scholar
[55]
P. Mercelis, J.P. Kruth, Resuidal stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. (2006).
DOI: 10.1108/13552540610707013
Google Scholar
[56]
D. Hagedorn-Hansen, M. B Bezuidenhout, D. Dimitrov, G.A., Oosthuizen, The Effects of Selective Laser Melting Scan Strategies on Deviation of Hybrid Parts, South Africa J. of Industr. Engiee., 28(2017) 200-212.
DOI: 10.7166/28-3-1862
Google Scholar