The Surface Morphology and Electrochemical Properties of Pure Titanium Obtained by Selective Laser Melting Method

Article Preview

Abstract:

High requirements in biomedical application are associated with biocompatibility and high corrosion resistance of metal biomaterials, which are used equally in joint and bon substitution and the healing and renewal of bone weaknesses. In this paper the surface morphology and electrochemical properties of samples manufactured by Selective Laser Melting SLM method using pure titanium Grade II powder material are explored. The tested samples were produced divided into four group, depended on the values of basic process parameters – laser power P, scanning speed SP and point distance PD. The value of energy density E delivered to the sintered material was constants and was an approximately E = 75 ± 2 J/mm3. In the paper, the pitting corrosion test by recording anodic polarization curves and electrochemical spectroscopy test were carried out. Additionally the microscopic observation and microchemical analysis by SEM/EDS analysis and material density measurements were performed too. Based on the obtained results it can be concluded that the laser power P and scanning speed SP have a significant affect on the obtained full density defect free material with high corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

21-32

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials, Prog. Mater. Sci., 93(2018) 45–111.

DOI: 10.1016/j.pmatsci.2017.08.003

Google Scholar

[2] A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol., 225(2015) 122–132.

DOI: 10.1016/j.jmatprotec.2015.05.008

Google Scholar

[3] A. Suzuki, R. Nishida, N. Takata, M. Kobashi, M. Kato, Design of laser parameters for Selective laser melted maraging steel based on deposited Energy density, Additiv. Manuf., 28(2019) 160-168.

DOI: 10.1016/j.addma.2019.04.018

Google Scholar

[4] A. Bandyopadhyay and B. Heer, Additive manufacturing of multi-material structures, Mater. Sci. Eng. R Reports, vol. 129, p.1–16, Jul. (2018).

Google Scholar

[5] Y. Liu, X. Li, C. Chen, Y.Song, P. Ni, Hight throughput rapid detection for SLM manufatured elements uisng ultrasonic measurement, Measurement, 144(2019), 234-242.

DOI: 10.1016/j.measurement.2019.04.052

Google Scholar

[6] M.T. Mohammed, Mechanical properties of SLM-Titanium Materials for Biomedical Applications: A Review, Mater. Tod. Proceed., 5(2018), 17906-17913.

DOI: 10.1016/j.matpr.2018.06.119

Google Scholar

[7] F. Bartolomeua, J. Fonsecaa, N. Peixinhob, N. Alvesc, M. Gasikd, F.S. Silvaa, G. Mirandaa, Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants, J Mech Behav Biomed Mater, 99(2019), 104-117.

DOI: 10.1016/j.jmbbm.2019.07.023

Google Scholar

[8] R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium J. Phys. D: Appl. Phys.

DOI: 10.1088/0022-3727/40/18/037

Google Scholar

[9] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, Light extinction in metallic powder beds: Correlation with powder structure, J. Appl. Phys., 98(2005) 45-52.

DOI: 10.1063/1.1948509

Google Scholar

[10] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges, Applied Physics Reviews, 2,(2015) 413-434.

DOI: 10.1063/1.4937809

Google Scholar

[11] B. Van Hooreweder, Y. Apers, K. Lietaert, J.P. Kruth, Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting, Acta Biomater., 47(2019), 193-202.

DOI: 10.1016/j.actbio.2016.10.005

Google Scholar

[12] S.A. Khairallah, A. Anderson Mesoscopic simulation model of selective laser melting of stainless steel powder J. Mater. Process. Technol., 214 (2014) 2627-263.

DOI: 10.1016/j.jmatprotec.2014.06.001

Google Scholar

[13] M. Tang, P.C. Pistorius, J.L. Beuth Geometric model to predict porosity of part produced in powder bed system Materials Science and Technology (2015) 129-135.

Google Scholar

[14] J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering Assem. Autom., 23 (2003) 357-371.

DOI: 10.1108/01445150310698652

Google Scholar

[15] N. Dai, L.-C. Zhang, J. Zhang, Q. Chen, M. Wu, Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution, Corros. Sci., 102 (2016), 484-489.

DOI: 10.1016/j.corsci.2015.10.041

Google Scholar

[16] F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, G. Miranda, 316L stainless steel mechanical and tribological behavior—a comparison between selective laser melting, hot pressing and conventional casting, Addit. Manuf., 16 (2017), 81-89.

DOI: 10.1016/j.addma.2017.05.007

Google Scholar

[17] F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, A.A. Zadpoor, Acta Biomaterialia Additively manufactured metallic porous biomaterials based on minimal surfaces : a unique combination of topological , mechanical , and mass transport properties, Acta Biomater., 53 (2017), 572-584.

DOI: 10.1016/j.actbio.2017.02.024

Google Scholar

[18] Y. Xu, D. Zhang, Y. Zhou, W. Wang, X. Cao, Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM), Materials, 10 (2017).

DOI: 10.3390/ma10091048

Google Scholar

[19] F. Bartolomeu, M. Sampaio, O. Carvalho, E. Pinto, N. Alves, J.R. Gomes, F.S. Silva, G. Miranda, Tribological behavior of Ti6Al4V cellular structures produced by selective laser melting J. Mech. Behav. Biomed. Mater., 69 (2017), 128-134.

DOI: 10.1016/j.jmbbm.2017.01.004

Google Scholar

[20] R.I.M. Asria, W.S.W. Harunb, M. Samykanoc, N.A.C. Lahc, S.A.C. Ghanib, F. Tarlochand, M.R. Razae, Corrosion and surface modification on biocompatible metals: A review, Mater. Sci. Eng. C., 77(2017), 1261-1274.

Google Scholar

[21] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomater, 83(2016), 127-141.

DOI: 10.1016/j.biomaterials.2016.01.012

Google Scholar

[22] M.R. Kaluđerović, J.P. Schreckenbach, H.-L. Graf, Titanium dental implant surfaces obtained by anodic spark deposition – from the past to the future, Mater. Sci. Eng. C, 69 (2016), 1429-1441.

DOI: 10.1016/j.msec.2016.07.068

Google Scholar

[23] Q. Chen., G.A., Thousa, Metallic implant biomaterials, Mater. Sci. Eng. C, 87(2015), 1-57.

Google Scholar

[24] J. Luo, S. Guo, Y. Lu, X. Xu, Ch. Zhao, S. Wu, J. Linab, Cytocompatibility of Cu-bearing Ti6Al4V alloys manufactured by selective laser Melting, Mater. Character., 143(2018), 127-136.

DOI: 10.1016/j.matchar.2017.12.003

Google Scholar

[25] R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals, J Mech Behav Biomed Mater, 57(2016), 95-108.

DOI: 10.1016/j.jmbbm.2015.11.031

Google Scholar

[26] N. Espallargas, C. Torres, A.I. Muñoz, A metal ion release study of CoCrMo exposed to corrosion and tribocorrosion conditions in simulated body fluids, Wear, 332-333 (2015), 669-678.

DOI: 10.1016/j.wear.2014.12.030

Google Scholar

[27] B. Alemón, M. Flores, W. Ramírez, J.C. Huegel, E. Broitman, Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CNx multilayer in simulated body fluid plus bovine serum albumin, Tribol. Int., 81 (2015), 159-168.

DOI: 10.1016/j.triboint.2014.08.011

Google Scholar

[28] M. Abdel-Hady Gepreela, M. Niinomib, Biocompatibility of Ti-alloys for long-term implantation, J Mech Behav Biomed Mater, 20(2013), 407-415.

Google Scholar

[29] M. Xiao, Y.M. Chen, M.N. Biao, X.D. Zhang, B.C. Yang, Bio-functionalization of biomedical metals, Mater. Sci. Eng. C, 70(2017), 1057-1071.

Google Scholar

[30] F. Toptan, A. C. Alves, Ó. Carvalho, F. Bartolomeu, A. M.P. Pinto, F. Silva, G. Miranda, Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy, J Mater Process Technol, 266(2019), 239-245.

DOI: 10.1016/j.jmatprotec.2018.11.008

Google Scholar

[31] J.J. de Damborenea, M.A. Arenas, M.A. Larosa, A.L. Jardini, C.A. de Carvalho Zavaglia, A. Conde, Corrosion of Ti6Al4V pins produced by direct metal laser sintering, Appl. Surf. Sci. (2017).

DOI: 10.1016/j.apsusc.2016.10.031

Google Scholar

[32] L. Gaviria, J.P. Salcido, T. Guda, J.L. Ong, Current trends in dental implants, J. Korean Assoc. Oral Maxillofac. Surg., 40 (2014), 50-60.

DOI: 10.5125/jkaoms.2014.40.2.50

Google Scholar

[33] S.S.S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, Antibacterial and bioactive nanostructured titanium surfaces for bone integration, Appl Surf Sci, 311 (2014), 279-291.

DOI: 10.1016/j.apsusc.2014.05.056

Google Scholar

[34] l Y. Lu. L. Ren, X. Xu, Y. Yang, S. Wu, J. Luo, M. Yang, L. Liu, D. Zhuang, K. Yang, J. Lin, Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting, J Mech Behav Biomed Mater, 81(2018), 130-141.

DOI: 10.1016/j.jmbbm.2018.02.026

Google Scholar

[35] A.O.F. Hayama, P.N. Andrade, A. Cremasco, R.J. Contieri, C.R.M. Afonso, R. Caram, Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys, Mater. Des., 55 (2014), 1006-1013.

DOI: 10.1016/j.matdes.2013.10.050

Google Scholar

[36] L. Montanaro, D. Campoccia, C.R. Arciola, Advancements in molecular epidemiology of implant infections and future perspectives, Biomater, 28 (2007), 5155-5168.

DOI: 10.1016/j.biomaterials.2007.08.003

Google Scholar

[37] J.L. Gilbert, S.A. Mali, Medical Implant Corrosion: Electrochemistry at Metallic Biomaterial Surfaces, Springer, Degradation of Implant Materials, (2012).

DOI: 10.1007/978-1-4614-3942-4_1

Google Scholar

[38] N. Eliaz, Corrosion of Metallic Biomaterials: A Review, Maters., 12(2019).

Google Scholar

[39] N. Eliaz, Biomaterials and corrosion. In: Kamachi Mudali U., Raj B., editors. Corrosion Science and Technology: Mechanism, Mitigation and Monitoring. Narosa Publishing House; New Delhi, India: 2008. p.356–397. Chapter 1.

Google Scholar