[1]
S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials, Prog. Mater. Sci., 93(2018) 45–111.
DOI: 10.1016/j.pmatsci.2017.08.003
Google Scholar
[2]
A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol., 225(2015) 122–132.
DOI: 10.1016/j.jmatprotec.2015.05.008
Google Scholar
[3]
A. Suzuki, R. Nishida, N. Takata, M. Kobashi, M. Kato, Design of laser parameters for Selective laser melted maraging steel based on deposited Energy density, Additiv. Manuf., 28(2019) 160-168.
DOI: 10.1016/j.addma.2019.04.018
Google Scholar
[4]
A. Bandyopadhyay and B. Heer, Additive manufacturing of multi-material structures, Mater. Sci. Eng. R Reports, vol. 129, p.1–16, Jul. (2018).
Google Scholar
[5]
Y. Liu, X. Li, C. Chen, Y.Song, P. Ni, Hight throughput rapid detection for SLM manufatured elements uisng ultrasonic measurement, Measurement, 144(2019), 234-242.
DOI: 10.1016/j.measurement.2019.04.052
Google Scholar
[6]
M.T. Mohammed, Mechanical properties of SLM-Titanium Materials for Biomedical Applications: A Review, Mater. Tod. Proceed., 5(2018), 17906-17913.
DOI: 10.1016/j.matpr.2018.06.119
Google Scholar
[7]
F. Bartolomeua, J. Fonsecaa, N. Peixinhob, N. Alvesc, M. Gasikd, F.S. Silvaa, G. Mirandaa, Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants, J Mech Behav Biomed Mater, 99(2019), 104-117.
DOI: 10.1016/j.jmbbm.2019.07.023
Google Scholar
[8]
R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium J. Phys. D: Appl. Phys.
DOI: 10.1088/0022-3727/40/18/037
Google Scholar
[9]
M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, Light extinction in metallic powder beds: Correlation with powder structure, J. Appl. Phys., 98(2005) 45-52.
DOI: 10.1063/1.1948509
Google Scholar
[10]
W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges, Applied Physics Reviews, 2,(2015) 413-434.
DOI: 10.1063/1.4937809
Google Scholar
[11]
B. Van Hooreweder, Y. Apers, K. Lietaert, J.P. Kruth, Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting, Acta Biomater., 47(2019), 193-202.
DOI: 10.1016/j.actbio.2016.10.005
Google Scholar
[12]
S.A. Khairallah, A. Anderson Mesoscopic simulation model of selective laser melting of stainless steel powder J. Mater. Process. Technol., 214 (2014) 2627-263.
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[13]
M. Tang, P.C. Pistorius, J.L. Beuth Geometric model to predict porosity of part produced in powder bed system Materials Science and Technology (2015) 129-135.
Google Scholar
[14]
J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering Assem. Autom., 23 (2003) 357-371.
DOI: 10.1108/01445150310698652
Google Scholar
[15]
N. Dai, L.-C. Zhang, J. Zhang, Q. Chen, M. Wu, Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution, Corros. Sci., 102 (2016), 484-489.
DOI: 10.1016/j.corsci.2015.10.041
Google Scholar
[16]
F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, G. Miranda, 316L stainless steel mechanical and tribological behavior—a comparison between selective laser melting, hot pressing and conventional casting, Addit. Manuf., 16 (2017), 81-89.
DOI: 10.1016/j.addma.2017.05.007
Google Scholar
[17]
F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, A.A. Zadpoor, Acta Biomaterialia Additively manufactured metallic porous biomaterials based on minimal surfaces : a unique combination of topological , mechanical , and mass transport properties, Acta Biomater., 53 (2017), 572-584.
DOI: 10.1016/j.actbio.2017.02.024
Google Scholar
[18]
Y. Xu, D. Zhang, Y. Zhou, W. Wang, X. Cao, Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM), Materials, 10 (2017).
DOI: 10.3390/ma10091048
Google Scholar
[19]
F. Bartolomeu, M. Sampaio, O. Carvalho, E. Pinto, N. Alves, J.R. Gomes, F.S. Silva, G. Miranda, Tribological behavior of Ti6Al4V cellular structures produced by selective laser melting J. Mech. Behav. Biomed. Mater., 69 (2017), 128-134.
DOI: 10.1016/j.jmbbm.2017.01.004
Google Scholar
[20]
R.I.M. Asria, W.S.W. Harunb, M. Samykanoc, N.A.C. Lahc, S.A.C. Ghanib, F. Tarlochand, M.R. Razae, Corrosion and surface modification on biocompatible metals: A review, Mater. Sci. Eng. C., 77(2017), 1261-1274.
Google Scholar
[21]
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomater, 83(2016), 127-141.
DOI: 10.1016/j.biomaterials.2016.01.012
Google Scholar
[22]
M.R. Kaluđerović, J.P. Schreckenbach, H.-L. Graf, Titanium dental implant surfaces obtained by anodic spark deposition – from the past to the future, Mater. Sci. Eng. C, 69 (2016), 1429-1441.
DOI: 10.1016/j.msec.2016.07.068
Google Scholar
[23]
Q. Chen., G.A., Thousa, Metallic implant biomaterials, Mater. Sci. Eng. C, 87(2015), 1-57.
Google Scholar
[24]
J. Luo, S. Guo, Y. Lu, X. Xu, Ch. Zhao, S. Wu, J. Linab, Cytocompatibility of Cu-bearing Ti6Al4V alloys manufactured by selective laser Melting, Mater. Character., 143(2018), 127-136.
DOI: 10.1016/j.matchar.2017.12.003
Google Scholar
[25]
R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals, J Mech Behav Biomed Mater, 57(2016), 95-108.
DOI: 10.1016/j.jmbbm.2015.11.031
Google Scholar
[26]
N. Espallargas, C. Torres, A.I. Muñoz, A metal ion release study of CoCrMo exposed to corrosion and tribocorrosion conditions in simulated body fluids, Wear, 332-333 (2015), 669-678.
DOI: 10.1016/j.wear.2014.12.030
Google Scholar
[27]
B. Alemón, M. Flores, W. Ramírez, J.C. Huegel, E. Broitman, Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CNx multilayer in simulated body fluid plus bovine serum albumin, Tribol. Int., 81 (2015), 159-168.
DOI: 10.1016/j.triboint.2014.08.011
Google Scholar
[28]
M. Abdel-Hady Gepreela, M. Niinomib, Biocompatibility of Ti-alloys for long-term implantation, J Mech Behav Biomed Mater, 20(2013), 407-415.
Google Scholar
[29]
M. Xiao, Y.M. Chen, M.N. Biao, X.D. Zhang, B.C. Yang, Bio-functionalization of biomedical metals, Mater. Sci. Eng. C, 70(2017), 1057-1071.
Google Scholar
[30]
F. Toptan, A. C. Alves, Ó. Carvalho, F. Bartolomeu, A. M.P. Pinto, F. Silva, G. Miranda, Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy, J Mater Process Technol, 266(2019), 239-245.
DOI: 10.1016/j.jmatprotec.2018.11.008
Google Scholar
[31]
J.J. de Damborenea, M.A. Arenas, M.A. Larosa, A.L. Jardini, C.A. de Carvalho Zavaglia, A. Conde, Corrosion of Ti6Al4V pins produced by direct metal laser sintering, Appl. Surf. Sci. (2017).
DOI: 10.1016/j.apsusc.2016.10.031
Google Scholar
[32]
L. Gaviria, J.P. Salcido, T. Guda, J.L. Ong, Current trends in dental implants, J. Korean Assoc. Oral Maxillofac. Surg., 40 (2014), 50-60.
DOI: 10.5125/jkaoms.2014.40.2.50
Google Scholar
[33]
S.S.S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, Antibacterial and bioactive nanostructured titanium surfaces for bone integration, Appl Surf Sci, 311 (2014), 279-291.
DOI: 10.1016/j.apsusc.2014.05.056
Google Scholar
[34]
l Y. Lu. L. Ren, X. Xu, Y. Yang, S. Wu, J. Luo, M. Yang, L. Liu, D. Zhuang, K. Yang, J. Lin, Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting, J Mech Behav Biomed Mater, 81(2018), 130-141.
DOI: 10.1016/j.jmbbm.2018.02.026
Google Scholar
[35]
A.O.F. Hayama, P.N. Andrade, A. Cremasco, R.J. Contieri, C.R.M. Afonso, R. Caram, Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys, Mater. Des., 55 (2014), 1006-1013.
DOI: 10.1016/j.matdes.2013.10.050
Google Scholar
[36]
L. Montanaro, D. Campoccia, C.R. Arciola, Advancements in molecular epidemiology of implant infections and future perspectives, Biomater, 28 (2007), 5155-5168.
DOI: 10.1016/j.biomaterials.2007.08.003
Google Scholar
[37]
J.L. Gilbert, S.A. Mali, Medical Implant Corrosion: Electrochemistry at Metallic Biomaterial Surfaces, Springer, Degradation of Implant Materials, (2012).
DOI: 10.1007/978-1-4614-3942-4_1
Google Scholar
[38]
N. Eliaz, Corrosion of Metallic Biomaterials: A Review, Maters., 12(2019).
Google Scholar
[39]
N. Eliaz, Biomaterials and corrosion. In: Kamachi Mudali U., Raj B., editors. Corrosion Science and Technology: Mechanism, Mitigation and Monitoring. Narosa Publishing House; New Delhi, India: 2008. p.356–397. Chapter 1.
Google Scholar