[1]
T.Shi, C.Wang, G.Mia, F. Yana, Journal of Manufacturing Processes, Volume 42, June 2019, Pages 60-66, https://doi.org/10.1016/j.jmapro.2019.04.015.
Google Scholar
[2]
A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural Aspects of the Dissolution and Melting of Al2Cu Phase in AI-Si Alloys during Solution Heat Treatment of Al2Cu Phase in Al-Si Alloys during Solution Heat Treatment, Metallurgical And Materials Transactions A 27 (1996) 1785-1798.
DOI: 10.1007/bf02651928
Google Scholar
[3]
K. Labisz, Microstructure and mechanical properties of HPDL laser treated cast aluminium alloys, Materials Science and Engineering Technology 2014, Mat.-wiss. u. Werkstofftech., 45: 314-324.
DOI: 10.1002/mawe.201400231
Google Scholar
[4]
T. Tański, K. Labisz, K. Lukaszkowicz, Structure and properties of diamond-like carbon coatings deposited on non-ferrous alloys substrate, Solid State Phenomena 199, Mechatronic Systems and Materials V (2013), 170-176.
DOI: 10.4028/www.scientific.net/ssp.199.170
Google Scholar
[5]
W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research International, vol. 18/1, (2011), pp.135-142.
Google Scholar
[6]
G. Qianqian, L. Jiangqi, Y. Ping, J. Shunchao, H. Wenhao, Z. Jianxi, Optics & Laser Technology Volume 111, April 2019, Pages 387-394, https://doi.org/10.1016/j.optlastec.2018.09.060.
Google Scholar
[7]
J. Kusiński, J. Przybyłowicz, S. Kąc, A. Woldan, Structure and properties change In case of laser remelting of surface layers and coatings, Hutnik (1999) 14-20 (in Polish).
Google Scholar
[8]
A. Riquelme, P. Rodrigo, M.D. Escalera-Rodríguez, J. Rams, Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding, Results in Physics Volume 13, June 2019, 102160, https://doi.org/10.1016/j.rinp.2019.102160.
DOI: 10.1016/j.rinp.2019.102160
Google Scholar
[9]
J. Konieczny, L.A Dobrzański, K. Labisz, J. Duszczyk, The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys, Journal of Materials Processing Technology 157-158 (2004) 718-723.
DOI: 10.1016/j.jmatprotec.2004.07.130
Google Scholar
[10]
L. A. Dobrzanski, T. Tanski, Influence of aluminium content on behaviour of magnesium cast alloys in bentonite sand mould , Solid State Phenomena 147-149 (2009) 764-769.
DOI: 10.4028/www.scientific.net/ssp.147-149.764
Google Scholar
[11]
E. Kennedy, G. Byrne, D. N. Collins, Review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Tech 155-156 (2004) 1855-1860.
DOI: 10.1016/j.jmatprotec.2004.04.276
Google Scholar
[12]
L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum, Vols. 638-642, (2010,) pp.475-480.
DOI: 10.4028/www.scientific.net/msf.638-642.475
Google Scholar
[13]
L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3, 321-325 Special Issue, 2007,.
DOI: 10.1016/j.jmatprotec.2007.03.091
Google Scholar
[14]
E.F. Horst, B.L. Mordike, Magnesium Technology. Metallurgy, Design Data, Application, Springer-Verlag, Berlin Heidelberg, (2006).
Google Scholar
[15]
T. Tanski, Determining of laser surface treatment parameters used for light metal alloying with ceramic powders, MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK 45/5 (2014)333-343.
DOI: 10.1002/mawe.201400232
Google Scholar
[16]
B.J. Zheng, X.M. Chen, J.S. Lian, Microstructure and wear property of laser cladding Al+SiC powders on AZ91D magnesium alloy Opt Lasers Eng, 48 (2010), pp.526-532, 10.1016/j.optlaseng.2010.01.001.
DOI: 10.1016/j.optlaseng.2010.01.001
Google Scholar
[17]
L.A. Dobrzański, B. Tomiczek, M. Pawlyta, P. Nuckowski, TEM and XRD Study of Nanostructured Composite Materials Reinforced with the Halloysite Particles, Materials Science Forum 783 (2014) 1591-1596.
DOI: 10.4028/www.scientific.net/msf.783-786.1591
Google Scholar
[18]
L.A. Dobrzański, K. Labisz, M. Piec, A.J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
DOI: 10.4028/www.scientific.net/msf.530-531.334
Google Scholar
[19]
T. Tanski, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena, 186 (2012) 192-197.
DOI: 10.4028/www.scientific.net/ssp.186.192
Google Scholar
[20]
Y. Lü, Q. Wang, X. Zeng, W. Ding, Y. Zhu, Y. Lu, et al., Effects of silicon on microstructure, fluidity, mechanical properties, and fracture behaviour of Mg – 6Al alloy Effects of silicon on microstructure, Fluidity, mechanical properties, and fracture behaviour of Mg ± 6Al alloy, Mater Sci Technol, 17 (2013), pp.204-214, 10.1179/026708301101509872.
DOI: 10.1179/026708301101509872
Google Scholar
[21]
N. Chawla, K.K. Chawla, Metal-matrix composites in ground transportation, JOM, 58 (2006), pp.67-70, 10.1007/s11837-006-0231-5.
DOI: 10.1007/s11837-006-0231-5
Google Scholar
[22]
P. Farahmand, R. Kovacevic, An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Opt Laser Technol, 63 (2014), pp.154-168, 10.1016/j.optlastec.2014.04.016.
DOI: 10.1016/j.optlastec.2014.04.016
Google Scholar
[23]
B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser surface treatment of Inconel 718 alloy: thermal stress analysis, Opt Lasers Eng, 48 (2010), pp.740-749, 10.1016/j.optlaseng.2010.03.012.
DOI: 10.1016/j.optlaseng.2010.03.012
Google Scholar
[24]
A. Riquelme, P. Rodrigo, M.D. Escalera-Rodríguez, J. Rams, Analysis and optimization of process parameters in Al-SiCp laser cladding, Opt Lasers Eng, 78 (2016), pp.165-173, 10.1016/j.optlaseng.2015.10.014.
DOI: 10.1016/j.optlaseng.2015.10.014
Google Scholar
[25]
D. William, J. Callister, Introducción a la Ciencia e Ingeniería de los Materiales Reverté (1995), p.804.
Google Scholar
[26]
Lu Xiang-hong, Y. Yan-qin, Ma Zhi-ju, L. Cui-xia, C. Yan, A. Yun-lon, Kinetics and mechanism of interfacial reaction in SCS-6 Sic continuous fiber-reinforced Ti-A1 intermetallic matrix composites, Trans Nonferrous Met Soc China, 16 (2006), pp.77-83.
DOI: 10.1016/s1003-6326(06)60014-9
Google Scholar
[27]
L. Dubourg, D. Ursescu, F. Hlawka, A. Cornet, Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties, Wear, 258 (2005), pp.1745-1754, 10.1016/j.wear.2004.12.010.
DOI: 10.1016/j.wear.2004.12.010
Google Scholar
[28]
H. Wu, X.P. Cui, L. Geng, G.H. Fan, J.C. Pang, L.S. Wei, Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system, Intermetallics, 43 (2013), pp.8-15, 10.1016/j.intermet.2013.07.004.
DOI: 10.1016/j.intermet.2013.07.004
Google Scholar
[29]
Y. Viala, J.C. Bosselet, F. Laurent, V. Lepetitcorps, Mechanism and kinetics of the chemical interaction between liquid aluminium and silicon-carbide single crystals, J Mater Sci, 28 (1993), pp.5301-5312.
DOI: 10.1007/bf00570081
Google Scholar
[30]
a Ureña, M. Escalera, L. Gil, Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites, Compos Sci Technol 60 (2000), pp.613-622, 10.1016/S0266-3538(99)00168-2.
DOI: 10.1016/s0266-3538(99)00168-2
Google Scholar
[31]
K. Hao, H.Wang, M. Gao, R.Wu, X. Zeng, Laser welding of AZ31B magnesium alloy with beam oscillation, Journal of Materials Research and Technology, 2019, https://doi.org/10.1016/j.jmrt.2019.04.024.
DOI: 10.1016/j.jmrt.2019.04.024
Google Scholar
[32]
A. Riquelme, P. Rodrigo, M. Dolores Escalera-Rodríguez, J. Rams, Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding, Results in Physics 13, 2019, https://doi.org/10.1016/j.rinp.2019.102160.
DOI: 10.1016/j.rinp.2019.102160
Google Scholar
[33]
Influence Of Mg Addition On Crystallisation Kinetics And Structure Of The Zn-Al-Cu Alloy, Krupiński M. ; Labisz K. ; Tański T. ; Krupińska B. ; Krol M. ; Polok-Rubiniec M., Archives Of Metallurgy And Materials, Volume: 61, Issue: 2, Pages: 785-789, (2016).
DOI: 10.1515/amm-2016-0132
Google Scholar
[34]
Krupiński M., Krupińska B., Labisz K., Rdzawski Z., Tański T., Effect of chemical composition modification on structure and properties of the cast Zn-Al-Cu alloys, Proceedings Of The Institution Of Mechanical Engineers Part L-Journal Of Materials-Design And Applications, Volume: 230, Issue: 3, Pages: 805-81, (2016).
DOI: 10.1177/1464420715617193
Google Scholar
[35]
Chen S., Richter B., Morrow J. D., Sridharan K., Eriten M., Pulsed laser remelting of A384 aluminum, part I: Measuring homogeneity and wear resistance, Journal of Manufacturing Processes, Volume 32, Pages 606-614, (2018).
DOI: 10.1016/j.jmapro.2018.03.004
Google Scholar