Surface Hardening of AlMg5Si2Mn Alloy through Multi-Axis Compression Using Max Strain

Article Preview

Abstract:

Severe plastic deformation (SPD) processing techniques are applied to polycrystalline metallic materials in order to refine the grain size up to the sub-micrometre or nanometer level. The decrease in grain size to a sub-micrometre level is related to beneficial mechanical properties such as very high strength. The most widely applied SPD method is equal-channel angular pressing (ECAP). In distinction to traditional cold rolling or drawing, SPD techniques frequently employ cyclic strain paths that can lead to an essentially unchanged shape of the material sample after processing. In this paper, multi-axis compression is applied by using the MAXStrain (R) unit to impose cyclic compression in two mutually orthogonal directions. This study is aimed to realize the evolution of microstructure and mechanical properties of AlMg5Si2Mn aluminium cast alloy subjected to multi-axis compression. The microstructure of the alloy in the as-cast and as deformed state was characterized by light and scanning electron microscopy. The results reveal that multi-axis compression has a great influence on the evolution of microstructure and final mechanical properties. The enhanced mechanical properties are associated with the progressive formation of refined microstructure which is heterogeneously distributed across the sample.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

171-180

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fang, Q. Tang, Q. Zhang, T. Gu, M. Zhu, Modeling of microstructure and microsegregation formation during solidification of Al-Si-Mg alloys, ‎Int. J. Heat Mass Transf, 133 (2019) 371-381.

DOI: 10.1016/j.ijheatmasstransfer.2018.12.124

Google Scholar

[2] J. Zhang, M. Ma, F. Shen, D. Yi, B. Wang, Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables, Mater. Sci. Eng. A. 710 (2018) 27-37.

DOI: 10.1016/j.msea.2017.10.065

Google Scholar

[3] J. Hu, Jie Teng, X. Ji, D. Fu, W. Zhang, H. Zhang, Enhanced mechanical properties of an Al-Mg-Si alloy by repetitive continuous extrusion forming process and subsequent aging treatment, Mater. Sci. Eng. A. 695(2017) 35-44.

DOI: 10.1016/j.msea.2017.04.013

Google Scholar

[4] W. Yuan, Z. Liang, C. Zhang, L. Wie, Effects of La addition on the mechanical properties and thermal-resistant properties of Al-Mg-Si-Zr alloys based on AA 6201 Mater. Des.34 (2012) 788-792.

DOI: 10.1016/j.matdes.2011.07.003

Google Scholar

[5] Z. Ch. Duan, N.Q. Chinh, Ch. Xu, T.G. LangdonDeveloping processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys. Metall. Mater. Trans. A. 41 (2010) 802-809.

DOI: 10.1007/s11661-009-0020-1

Google Scholar

[6] N. Srivastava, G.P. Chaudhari, Grain refinement in ultrasonicated binary aluminium alloys, Journal of Crystal Growth, 532(2020).

DOI: 10.1016/j.jcrysgro.2019.125415

Google Scholar

[7] Genlian Fan, Haiyue Huang, Zhanqiu Tan, Dingbang Xiong, Qiang Guo, Makio Naito, Zhiqiang Li, Di Zhang, Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling, Mater. Sci. Eng. A. 708 (2017) 537-543.

DOI: 10.1016/j.msea.2017.10.031

Google Scholar

[8] J. Fakhimi Derakhshan, M.H. Parsa, H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process, Mater. Sci. Eng. A, 747(2019) 120-129.

DOI: 10.1016/j.msea.2019.01.058

Google Scholar

[9] M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, R.Z. Valiev, Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC, J. Mater. Sci. 48 (2013) 4501-4509.

DOI: 10.1007/s10853-013-7279-8

Google Scholar

[10] P. Snopiński, M. Król, Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing. Metals 8 (2018) 969.

DOI: 10.3390/met8110969

Google Scholar

[11] P. Snopiński, T. Tański, K. Gołombek, S. Rusz, O. Hilser, T. Donic, P.M. Nuckowski, M. Benedyk, Strengthening of AA5754 Aluminum Alloy by DRECE Process Followed by Annealing Response Investigation. Materials 13(2020)301.

DOI: 10.3390/ma13020301

Google Scholar

[12] P.M. Nuckowski, P. Snopiński; T. Wróbel, Influence of Plastic Strain Accumulation in Continuous Ingots during ECAP on Structure and Recrystallization Temperature of AlCu4MgSi Alloy. Materials 2020, 13, 576.

DOI: 10.3390/ma13030576

Google Scholar

[13] T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Materials Characterization. 133(2017) 185-195.

DOI: 10.1016/j.matchar.2017.09.039

Google Scholar

[14] M. Richert, Q. Liu, N. Hansen, Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression, Mater. Sci. Eng. A. 260 (1999) 275-283.

DOI: 10.1016/s0921-5093(98)00988-5

Google Scholar

[15] S. Roy, S. S. D., S. Suwas, S. Kumar, K. Chattopadhyay, Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086, Mater. Sci. Eng. A. 528 (2011) 8469-8478.

DOI: 10.1016/j.msea.2011.07.042

Google Scholar

[16] H. Zendehdel, A. Hassani, Influence of twist extrusion process on microstructure and mechanical properties of 6063 aluminum alloy, Mater. Des. 37 (2012) 13-18.

DOI: 10.1016/j.matdes.2011.12.009

Google Scholar

[17] A.P. Murugesan, V. Rajinikanth, B. Mahato, M. Wegner, M. Witte, G. Wilde, S. Ghosh Chowdhury, Concurrent precipitation and associated texture evolution in AA 6082 alloy during high pressure torsion (HPT) processing, Mater. Sci. Eng. A. 700 (2017) 487-494.

DOI: 10.1016/j.msea.2017.06.006

Google Scholar

[18] P. Snopiński, T. Tański, K. Matus, S. Rusz, Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die, Arch. Civil Mech. Eng. 19 (2019) 287-296.

DOI: 10.1016/j.acme.2018.11.003

Google Scholar

[19] P. Nageswara Rao, Dharmendra Singh, R. Jayaganthan, Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature, Mater. Des. 56 (2014) 97-104.

DOI: 10.1016/j.matdes.2013.10.045

Google Scholar

[20] J. Bystrzycki, A. Fraczkiewicz, R. Łyszkowski, M. Mondon, Z. Pakieła, Microstructure and tensile behavior of Fe–16Al-based alloy after severe plastic deformation, Intermetallics,18 (2010) 1338-1343.

DOI: 10.1016/j.intermet.2010.01.014

Google Scholar

[21] H. Petryk, S. Stupkiewicz, R. Kuziak, Grain refinement and strain hardening in IF steel during multi-axis compression: Experiment and modelling, J Mater Process Technol. 204 (2008) 255-263.

DOI: 10.1016/j.jmatprotec.2007.11.068

Google Scholar