Structure of Titanium GRADE 1 after Laser Alloying with FeCr Powder

Article Preview

Abstract:

Titanium alloys due to their low density and high mechanical properties are a group of materials that are being used willingly nowadays. A promising method of titanium heat treatment is laser surface alloying. Process parameters like laser beam power, its transverse speed, amount of alloying elements and shield gas, have influence on the material. Different chemical composition and morphology can be achieved resulting in a change of properties on the surface of the material. The paper presents the investigation of titanium GRADE 1 processed with iron‐nickel powder using laser alloying. The treatment was performed using a high power diode laser. Different laser beam power values were used.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

157-170

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.Q. Wua, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys, J. Mater. Des. 46 (2013) 668-674.

DOI: 10.1016/j.matdes.2012.10.059

Google Scholar

[2] J. Qazi, J. Rahim, F.S. Fores, O. Senkov, A. Genc Phase transformations in Ti6Al4V- x H alloys, Metal Mater Trans A. 32 (2001) 2453-2463.

DOI: 10.1007/s11661-001-0035-8

Google Scholar

[3] C. Guo, J.S. Zhou, J.R. Zhao, J.M. Chen Improvement of the tribological properties of pure Ti by laser cladding intermetallic compound composite coating, Proc Inst Mech Eng Eng Tribul. 225 (2011) 864-874.

DOI: 10.1177/1350650111409665

Google Scholar

[4] T. Tański, P. Snopiński, W. Pakieła, Structure and properties of ultra fine grained aluminium alloys after laser surface treatment, Materialwissenschaft Und Werkstofftechnik, 47 (2016) 419-427.

DOI: 10.1002/mawe.201600517

Google Scholar

[5] H. Knobbe, P. Köster, H. Christ, C. Fritzen, M. Riedler, Initiation and propagation of short fatigue cracks in forged Ti–6Al–4V, Procedia Eng. 2 (2010) 931-940.

DOI: 10.1016/j.proeng.2010.03.101

Google Scholar

[6] B. Oberwinkler, M. Riedler, W. Eichlseder, Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings. Int J Fatigue. 32 (2010) 808-814.

DOI: 10.1016/j.ijfatigue.2009.06.021

Google Scholar

[7] C. Leyens, M. Peters (Eds.), Titanium and titanium alloys: fundamentals and applications, Wiley-VCH, Weinheim (2003).

Google Scholar

[8] Y. Chen, X. Nie, A. Leyland, J. Housden, A. Matthews Substrate and bonding layer effects on performance of DLC and TiN biomedical coatings in hank's solution under cyclic impact–sliding loads Surf. Coat. Technol. 237 (2013) 219-229.

DOI: 10.1016/j.surfcoat.2013.09.029

Google Scholar

[9] A. Vadiraj, M. Kamaraj Fretting fatigue studies of titanium nitride-coated biomedical titanium alloys J. Mater. Eng. Perform. 15 (2006) 553-557.

DOI: 10.1361/105994906x136115

Google Scholar

[10] Y. Chen, X. Nie, A. Leyland, J. Housden, A. Matthews Substrate and bonding layer effects on performance of DLC and TiN biomedical coatings in hank's solution under cyclic impact–sliding loads Surf. Coat. Technol. 237 (2013) 219-229.

DOI: 10.1016/j.surfcoat.2013.09.029

Google Scholar

[11] D. Krupa, J. Baszkiewicz, J. Kozubowski, A. Barcz, J. Sobczak, A. Biliński, et al. Effect of phosphorus–ion implantation on the corrosion resistance and biocompatibility of titanium Biomaterials 23 (2002) 3329-3340.

DOI: 10.1016/s0142-9612(02)00020-0

Google Scholar

[12] A.P.I. Popoola, O.F. Ochonogor, M. AbdulwahabCorrosion and hardness characteristic of laser surface modified Ti6Al4V/Zr + TiC and Ti6Al4V/Ti + TiC. Int J Electrochem Sci. 8 (2013) 2449-2458.

Google Scholar

[13] J.B. Fogagnolo, A.V. Rodrigues, M.S.F. Lima, V. Amigo, R. Caram A novel proposal to manipulate the properties of titanium parts by laser surface alloying. J Script Mater. 68 (2013) 471-474.

DOI: 10.1016/j.scriptamat.2012.11.016

Google Scholar

[14] O.F. Ochonogora, C. Meacockb, M. Abdulwahaba, S. Pityanaab Popoola API Effects of Ti and TiC ceramic powder on laser-cladded Ti–6Al–4V in situ intermetallic composite. Appl Surf Sci. 263 (2012) 591-596.

DOI: 10.1016/j.apsusc.2012.09.114

Google Scholar

[15] Y.C. Lin, Y.C. Lin, Y.C. Chen Evolution of the microstructure and tribological performance of Ti–6Al–4V cladding with TiN powder. J Mater Des. 36 (2012) 584-589.

DOI: 10.1016/j.matdes.2011.12.007

Google Scholar

[16] E. Chikarakara, S. Naher, D. Brabazon, E. Chikarakara, S. Naher, D. Brabazon, High speed laser surface modification of Ti–6Al–4V. Surf Coat Technol. 206 (2012) 3223-3229.

DOI: 10.1016/j.surfcoat.2012.01.010

Google Scholar

[17] Heloisa A. Acciari, Dener P.S. Palma, Eduardo N. Codaro, Qingyun Zhou, Jipeng Wang, Yunhan Ling, Jizhong Zhang, Zhengjun Zhang, Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates. Appl Surf Sci. 487 (2019) 1111-1120.

DOI: 10.1016/j.apsusc.2019.05.216

Google Scholar

[18] J. Li, J. Zhou, A. Feng, S. Huang, X. Meng, Y. Sun, Y. Huang, X. Tian, Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy. Opt Laser Technol. 118 (2019) 183–191.

DOI: 10.1016/j.optlastec.2019.05.007

Google Scholar

[19] S. Huang, J. Zhao, J. Sheng, X. Meng, E. Agyenim-Boateng, D. Ma, J. Li, J. Zhou, Effect of laser peening with different power densities on vibration fatigue resistance of hydrogenated TC4 titanium alloy. Int J Fatigue. 131 (2020)105-335.

DOI: 10.1016/j.ijfatigue.2019.105335

Google Scholar

[20] M. Logesh, R. Selvabharathi, T. Thangeeswari, S. Palani, Influence of severe double shot peening on microstructure properties of Ti 6Al-4V and Titanium Grade 2 dissimilar joints using laser beam welding. Opt Laser Technol. 123 (2020) 105-883.

DOI: 10.1016/j.optlastec.2019.105883

Google Scholar

[21] Jing Li, Jianzhong Zhou, Aixin Feng, Yu Huang, Xuliang Tian, Shu Huang, Xiankai Meng, Twin formation and its strengthening mechanism of pure titanium processed by cryogenic laser peening. Opt Laser Technol. 120 (2019) 105-763.

DOI: 10.1016/j.optlastec.2019.105763

Google Scholar

[22] Rujian Sun, Liuhe Li, Ying Zhu, Peng Peng, Qing Li, Wei Guo, Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening. Opt Laser Technol. 115 (2019) 166-170.

DOI: 10.1016/j.optlastec.2019.02.019

Google Scholar

[23] Y. Wang, C. Ke, T. Wu, X. Zhao, R. Wang, Nanosecond laser texturing with hexagonal honeycomb microstructure on Titanium for improved wettability and optical properties. Optik. 192 (2019) 162-953.

DOI: 10.1016/j.ijleo.2019.162953

Google Scholar

[24] Xiaodong Shen, Liang Yang, Shuqian Fan, Qin Yang, Wenjie Wu, Bing Zhang. Colorful and superhydrophobic titanium surfaces textured by obliquely incident femtosecond laser induced micro/nano structures. Opt. Commun. 466 (2020) 125-687.

DOI: 10.1016/j.optcom.2020.125687

Google Scholar

[25] Zhou Yu, Guangzheng Yang, Wenjie Zhang, Jun Hu, Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy. J. Mater. Process. Technol. 255 (2018) 129-136.

DOI: 10.1016/j.jmatprotec.2017.12.009

Google Scholar

[26] Q. Zhang, J. Chen, X. Lin, H. Tan, W.D. Huang, Grain morphology control and texture characterization of laser solid formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy. J. Mater. Process. Technol. 238 (2016) 202-211.

DOI: 10.1016/j.jmatprotec.2016.07.011

Google Scholar

[27] Wilhelm Pfleging, Renu Kumari, Heino Besser, Tim Scharnweber, Jyotsna Dutta Majumdar, Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization. Appl Surf Sci. 355 (2015) 104-111.

DOI: 10.1016/j.apsusc.2015.06.175

Google Scholar

[28] L.R. Kanyane, O.S. Adesina, A.P. Popoola, G.A. Farotade, N. Malatji, Microstructural evolution and corrosion resistance of laser clad Ti-Ni on titanium alloy (Ti6Al4V). Procedia Manuf. 35 (2019) 1267-1272.

DOI: 10.1016/j.promfg.2019.06.086

Google Scholar

[29] B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, J. Chen, Phase composition and tribological properties of Ti–Al coatings produced on pure Ti by laser cladding. Appl Surf Sci. 253 (2007) 9301–9310.

DOI: 10.1016/j.apsusc.2007.05.056

Google Scholar

[30] Y. Yang, D. Zhang, W. Yan, Y. Zheng, Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding. Opt Laser Eng. 48 (2010) 119–124.

DOI: 10.1016/j.optlaseng.2009.08.003

Google Scholar

[31] Y. Chen, D. Wu, G. Ma, W. Lu, D. Guo, Coaxial laser cladding of Al2O3-13%TiO2 powders on Ti-6Al-4 V alloy. Surf. Coat. Technol. 228 (2013) 452–455.

DOI: 10.1016/j.surfcoat.2012.05.027

Google Scholar

[32] Y. Yang, N. Guo, J. Li, Synthesizing, microstructure and microhardness distribution of Ti–Si–C–N/TiCN composite coating on Ti–6Al–4V by laser cladding. Surf. Coat. Technol. 219 (2013) 1–7.

DOI: 10.1016/j.surfcoat.2012.12.038

Google Scholar

[33] F. Weng, C. Chen, H. Yu, Research status of laser cladding on titanium and its alloys: A review, Mater Design. 58 (2014) 412–425.

DOI: 10.1016/j.matdes.2014.01.077

Google Scholar

[34] J. Majumdara, I. Mannaa, A. Kumara, P. Bhargavac, A.K. Nath, Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface. J. Mater. Process. Technol. 209 (2009) 2237–2243.

DOI: 10.1016/j.jmatprotec.2008.05.017

Google Scholar

[35] Z. Ke-min, Z. Jian-xin, L. Jun, Y. Zhi-shui, W. Hui-ping, Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders. Trans. Nonferrous Met. Soc. China 20 (2010), pp.2192-2197.

DOI: 10.1016/s1003-6326(09)60441-6

Google Scholar

[36] W. Gao, Z. Zhang, S. Zhao, Y. Wang, H. Chen, X. Lin, Effect of a small addition of Ti on the Fe-based coating by laser cladding. Surf. Coat. Technol. 291 (2016) 423–429.

DOI: 10.1016/j.surfcoat.2016.03.015

Google Scholar

[37] F. Liu, Y. Mao, X. Lin, B. Zhou, T. Qian, Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding. Opt Laser Technol. 83 (2016) 140–147.

DOI: 10.1016/j.optlastec.2016.04.005

Google Scholar

[38] Z Sun, I Annergren, D Pan, T.A Mai, Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater. Sci. Eng. A. 345 (2003) 293-300.

DOI: 10.1016/s0921-5093(02)00477-x

Google Scholar

[39] Y. Yao, X. Li, Y.Y. Wang, W. Zhao, G. Li, R.P. Liu, Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting. J. Alloys Compd. 583 (2014) 43-47.

DOI: 10.1016/j.jallcom.2013.08.160

Google Scholar

[40] Ting Zhang, Qing Fan, Xiaoli Ma, Wen Wang, Kuaishe Wang, Pingquan Shen, Junlin Yang, Liqiang Wang, Effect of laser remelting on microstructural evolution and mechanical properties of Ti-35Nb-2Ta-3Zr alloy. Mater. Lett. 253 (2019) 310-313.

DOI: 10.1016/j.matlet.2019.06.105

Google Scholar

[41] Kaiwen Wei, Ming Lv, Xiaoyan Zeng, Zhongxu Xiao, Gao Huang, Mengna Liu, Jinfeng Deng, Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy. Mater. Charact. 150 (2019) 67-77.

DOI: 10.1016/j.matchar.2019.02.010

Google Scholar

[42] Bei He, Xu Cheng, Jia Li, Xiang-Jun Tian, Hua-Ming Wang, Effect of laser surface remelting and low temperature aging treatments on microstructures and surface properties of Ti-55511 alloy. Surf. Coat. Technol. 316 (2017) 104-112.

DOI: 10.1016/j.surfcoat.2016.11.097

Google Scholar

[43] Y. Wu, A.H. Wang, Z. Zhang, R.R. Zheng, H.B. Xia, Y.N. Wang, Laser alloying of Ti–Si compound coating on Ti–6Al–4V alloy for the improvement of bioactivity, Appl Surf Sci. 305 (2014) 16–23.

DOI: 10.1016/j.apsusc.2014.02.140

Google Scholar

[44] Y.Wu, A.H. Wang, Z. Zhang, H.B. Xia, Y.N. Wang, Wear resistance of in situ synthesized titanium compound coatings produced by laser alloying technique, Surf. Coat. Technol. 258 (2014) 711–715.

DOI: 10.1016/j.surfcoat.2014.08.012

Google Scholar

[45] W. Bochnowski, Microstructure and Microhardness of Ti6Al4V Alloy Treated by GTAW SiC Alloying. Archives of Foundry Engineering 12 (2012) 261-266.

DOI: 10.2478/v10266-012-0070-5

Google Scholar

[46] S. Romankov, W. Sha, S.D. Kaloshkin, K. Kaevitser, Fabrication of Ti–Al coatings by mechanical alloying method, Surf. Coat. Technol. 201 (2006) 3235–3245.

DOI: 10.1016/j.surfcoat.2006.06.044

Google Scholar

[47] S. Mridha, T.N Baker, Effects of nitrogen gas flow rates on the microstructure and properties of laser-nitrided IMI318 titanium alloy (Ti–4V–6Al), J. Mater. Process. Technol. 77 (1998) 115–121.

DOI: 10.1016/s0924-0136(97)00408-1

Google Scholar

[48] W.H. Kao, Y.L. Su, J.H. Horng, C.Y. Chang, Tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy produced by selective laser melting method and then processed using gas nitriding, CN or Ti-C:H coating treatments, Surf. Coat. Technol. 350 (2018) 172-187.

DOI: 10.1016/j.surfcoat.2018.07.011

Google Scholar

[49] X.C. Zhang, Z.D. Liu, J.S. Xu, F.Z. Xuan, Z.D. Wang, S.T. Tu, Synthesis of TiN/Ti3Al composite coatings on Ti6Al4V alloy by plasma spraying and laser nitriding, Surf. Coat. Technol. 228 (2013) 107–110.

DOI: 10.1016/j.surfcoat.2012.07.024

Google Scholar

[50] Alaeddine Kaouka, Khedidja Benarous, Electrochemical boriding of titanium alloy Ti-6Al-4V, J Mater Res Tchnol. 8 (2019) 6407-6412.

DOI: 10.1016/j.jmrt.2019.10.024

Google Scholar

[51] Mourad Keddam, Sukru Taktak, Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding, Appl Surf Sci. 399 (2017) 229-236.

DOI: 10.1016/j.apsusc.2016.11.227

Google Scholar

[52] C. Li, J. Won, S. Choi, J Choe, S. Lee, C. Park, J. Yeom, J. Hong, Simultaneous achievement of equiaxed grain structure and weak texture in Pure Titanium via selective laser melting and subsequent heat treatment, J. Alloys Compd. 803 (2019) 407-412.

DOI: 10.1016/j.jallcom.2019.06.305

Google Scholar

[53] A. Ataee, Y. Li, M. Brandt, C. Wen, Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications, Acta Mater. 158 (2019) 354-368.

DOI: 10.1016/j.actamat.2018.08.005

Google Scholar

[54] B. Wysocki, P. Maj, A. Krawczyńska, K. Rożniatowski, J. Zdunek, K. Kurzydłowski, W. Święszkowski, Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM), J. Mater. Process. Technol. 241 (2017) 13-23.

DOI: 10.1016/j.jmatprotec.2016.10.022

Google Scholar

[55] P. Fox, S. Pogson, C. Sutcliffe, E. Jones. Interface interactions between porous titanium/tantalum coatings, produced by Selective Laser Melting (SLM), on a cobalt–chromium alloy, Surf. Coat. Technol. 202 (2008) 5001-5007.

DOI: 10.1016/j.surfcoat.2008.05.003

Google Scholar

[56] C. Qiu, Q. Liu, Multi-scale microstructural development and mechanical properties of a selectively laser melted beta titanium alloy, Addit. Manuf. 30 (2019) 1-13.

DOI: 10.1016/j.addma.2019.100893

Google Scholar

[57] Y.J. Liu, D.C. Ren, S.J. Li, H. Wang, L.C. Zhang, T.B. Sercombe, Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting, Addit. Manuf. 32 (2020) 101-060.

DOI: 10.1016/j.addma.2020.101060

Google Scholar

[58] Cambre N. Kelly, Jaedyn Francovich, S. Julmi, David Safranski, Robert E. Guldberg, Hans J. Maier, Ken Gall, Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering, Acta Biomater. 94 (2019) 610-626.

DOI: 10.1016/j.actbio.2019.05.046

Google Scholar

[59] Tae-Wook Na, Won Rae Kim, Seung-Min Yang, Ohyung Kwon, Jong Min Park, Gun-Hee Kim, Kyung-Hwan Jung, Chang-Woo Lee, Hyung-Ki Park, Hyung Giun Kim, Effect of laser power on oxygen and nitrogen concentration of commercially pure titanium manufactured by selective laser melting, Mater Charact. 143 (2018) 110-117.

DOI: 10.1016/j.matchar.2018.03.003

Google Scholar

[60] N.S. Weston, M. Jackson, FAST-forge − A new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components, J. Mater. Process. Technol. (2017) 335-346.

DOI: 10.1016/j.jmatprotec.2016.12.013

Google Scholar

[61] E. Calvert, B. Wynne, N. Weston, A. Tudball, M. Jackson, Thermomechanical processing of a high strength metastable beta titanium alloy powder, consolidated using the low-cost FAST-forge process, J. Mater. Process. Technol. 254 (2018) 158-170.

DOI: 10.1016/j.jmatprotec.2017.11.035

Google Scholar

[62] E.L. Calvert, A.J. Knowles, J.J. Pope, D. Dye, M. Jackson. Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST), Scr. Mater. 159 (2019) 51-57.

DOI: 10.1016/j.scriptamat.2018.08.036

Google Scholar