The Influence of Hydrostatic Pressure on the Binding Energy of Hydrogenic Impurity State in a Wurtzite AlyGa1-yN/AlxGa1-xN Parabolic Quantum Well

Article Preview

Abstract:

The influence of hydrostatic pressure on the binding energy of hydrogenic impurity state in a wurtzite AlyGa1-yN/AlxGa1-xN parabolic quantum well and GaN/AlxGa1-xN square quantum well are studied using the variational method. The ground-state binding energies are presented as the functions of hydrostatic pressure, well width, composition and impurity center position. The anisotropic properties of the parameters in the system, and the changes (dependence) of electron effective mass, the dielectric constant, band gap with pressure and coordinate are considered in the numerical calculations. The results show that the hydrostatic pressure has obvious influence on the binding energy. The binding energy increase slowly with increasing the hydrostatic pressure p and the composition x, while the binding energy decrease significantly with increasing the well width and the position of impurity center. It is seen that the changing trends of the binding energy as a function of well width, pressure and the composition in the AlyGa1-yN/AlxGa1-xN parabolic quantum well are basically the same with that in the GaN/AlxGa1-xN square quantum well, but the changing trends of the binding energy as a function of impurity center position in the AlyGa1-yN/AlxGa1-xN parabolic quantum well are significantly greater than that in the GaN/AlxGa1-xN square quantum well.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

14-21

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Shan, W. Walukiewicz, K. M. Yu et al. Effect of nitrogen on the electronic band structure of group III-N-V alloys. Phys. Rev. B 62 (2000) 4211-4214.

Google Scholar

[2] K. Nomura, H. Ohta, K. Ueda, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300 (2003) 1269-1272.

DOI: 10.1126/science.1083212

Google Scholar

[3] K. Akita, T. Kyono, Y. Yoshizumi, et al. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J. Appl. Phys. 101 (2007) 033104-1 - 033104-5.

DOI: 10.1063/1.2432307

Google Scholar

[4] S. Nakamura. III–V nitride based light-emitting devices. Solid.State.Commun. 102 (1997) 237-243.

DOI: 10.1016/s0038-1098(96)00722-3

Google Scholar

[5] H. Zhao, N. Tansu. Optical gain characteristics of staggered InGaN quantum wells lasers. J. Appl. Phys. 107 (2010) 113110-1 - 113110-12.

DOI: 10.1063/1.3407564

Google Scholar

[6] Z. H. Zhang, Y. H. Zhang, W. G. Bi, et al. A charge inverter for III-nitride light-emitting diodes. Appl. Phys. Lett. 108 (2016) 151105-1 - 151105-5.

DOI: 10.1063/1.4947025

Google Scholar

[7] H. Condori Quispe, S. M. Islam, S. Bader et al. Terahertz spectroscopy of an electron-hole bilayer system in AlN/GaN/AlN quantum wells. Appl. Phys. Lett. 111 (2017) 073102-1-073102-4.

DOI: 10.1063/1.4996925

Google Scholar

[8] Y. H. Ben, F. Liang, D. G. Zhao et al. Different influence of InGaN lower waveguide layer on the performance of GaN-based violet and ultraviolet laser diodes. Superlatt. Microstruct. 133 (2019) 106208-1-106208-8.

DOI: 10.1016/j.spmi.2019.106208

Google Scholar

[9] Z. Z. Yu, Q. Li, Q. G. Fan et al. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells.Superlatt. Microstruct. 117 (2018) 200-206.

DOI: 10.1016/j.spmi.2018.03.034

Google Scholar

[10] G.. H.Wang. Nonlinear intersubband optical absorption in semiparabolic quantum wells. Optik 125 (2014) 2374-2377.

DOI: 10.1016/j.ijleo.2013.10.116

Google Scholar

[11] H. Hassanabadi, G. Liu, L. Lu. Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells. Sol. Stat. Commun. 152 (2012) 1761-1766.

DOI: 10.1016/j.ssc.2012.05.023

Google Scholar

[12] O. Emine. Comparison of asymmetric double parabolic-inversed parabolic quantum wells for linear optical (1–2) transition. Optik 139 (2017) 256-264.

DOI: 10.1016/j.ijleo.2017.04.003

Google Scholar

[13] N. T.Tien, N. N. T. Hung, T. T. Nguyen et al. Linear intersubband optical absorption in the semiparabolic quantum wells based on AlN/AlGaN/AlN under a uniform electric field. Physica B 519 (2017) 63-68.

DOI: 10.1016/j.physb.2017.05.038

Google Scholar

[14] J. H.Yuan, N. Chen,Y. Zhang et al. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells. Physica E 77 (2016) 102-107.

DOI: 10.1016/j.physe.2015.11.011

Google Scholar

[15] F. Ungan, J.C. Martínez-Orozco R.L. Restrepo et al. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields. Superlatt. Microstruct. 81 (2015) 26-33.

DOI: 10.1016/j.spmi.2015.01.016

Google Scholar

[16] E. Ozturk, I. Sokmen. Nonlinear intersubband transitions in a parabolic and an inverse parabolic quantum well under applied magnetic field. J. Lumin. 145 (2014) 387-392.

DOI: 10.1016/j.jlumin.2013.08.011

Google Scholar

[17] E. B.Al, F.Ungan , U.Yesilgul et al. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well. Opt. Mater. 47 (2015) 1-6.

DOI: 10.1016/j.optmat.2016.03.043

Google Scholar

[18] F. Ungan, U.Yesilgul, E.Kasapoglu et al. Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well. J. Lumin. 132 (2012) 1627-1631.

DOI: 10.1016/j.jlumin.2012.02.033

Google Scholar

[19] F. Q.Zhao, X. X. Liang, S. L. Ban. Levels of a polaron in a finite parabolic quantum well. Int. J. Mod. Phys. B 15 (2001) 527-535.

DOI: 10.1142/s0217979201004642

Google Scholar

[20] F. Q.Zhao, X. X. Liang, S. L. Ban. Influence of the spatially dependent effective mass on bound polarons in a finite parabolic quantum well. Euro. Phys. J. B 33, (2003) 3-8.

DOI: 10.1140/epjb/e2003-00134-3

Google Scholar

[21] F. Q.Zhao, J. Gong, Energy of a polaron in a wurtzite nitride parabolic quantum well. Chin. Phys. Lett. 24 (2007) 1327-1330.

DOI: 10.1088/0256-307x/24/5/056

Google Scholar

[22] T. Das, S. Panda, B.K. Panda. Nonlinear optical susceptibilities in the diffusion modified AlxGa1–xN/GaN single quantum well. Superlatt. Microstruct. 117 (2018) 105-114.

DOI: 10.1063/1.4980702

Google Scholar

[23] S. Panda, T. Das, B. K. Panda. Nonlinear optical susceptibilities in InxGa1−xN/GaN hexagonal single quantum well under applied electric field. Superlatt. Microstruct. 135 (2019) 106238-1-106238-11.

DOI: 10.1063/5.0017236

Google Scholar

[24] S. H. Ha, S. L. Ban. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter 20 (2008) 085218-1 - 085218-7.

DOI: 10.1088/0953-8984/20/8/085218

Google Scholar

[25] S. Adachi. GaAs, AlAs, and AlxGa1− xAs: Material parameters for use in research and device applications. J. Appl. Phys. 58 (1985) R1-R29.

Google Scholar

[26] D. Z. Y. Ting, Y. C. Chang, Γ-X mixing in GaAs/AlxGa1− xAs and AlxGa1− xAs/AlAs superlattices. Phys. Rev. B 36 (1987) 4359-4374.

DOI: 10.12681/eadd/7439

Google Scholar

[27] A. R. Goni, K. Syassen, M. Cardona. Cardona M. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B 41 (1990) 10104-10110.

DOI: 10.1103/physrevb.41.10104

Google Scholar

[28] N. Eseanu. Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A 374 (2010) 1278-1285.

DOI: 10.1016/j.physleta.2009.12.079

Google Scholar

[29] A. Bercha, W.Trzeciakowski, M. Gładysiewicz-Kudrawiec et al. Photocurrent measurements of InGaN/GaN quantum wells under hydrostatic and uniaxial pressure. J. Appl. Phys. 125 (2019) 115702-1-115702-11.

DOI: 10.1063/1.5090099

Google Scholar

[30] F. Yun, M. A. Reshchikov, L. He, et al. Energy band bowing parameter in AlxGa1− xN alloys. J. Appl. Phys. 92 (2002) 4837-4839.

DOI: 10.1063/1.1508420

Google Scholar