Electrical Conductivity and Phase Transitions in Ferroelectric Solid Solutions Li0.17Na0.83ТауNb1-уO3 (y = 0 – 0.5) in High Pressure

Article Preview

Abstract:

Ferroelectric ceramic solid solutions LixNa1-xTayNb1-yO3 (х = 0.17; у = 0 – 0.5) with the perovskite structure have been obtained by the thermobaric synthesis method. Particularities of their microstructure, elastic properties, electrical conductivity and permittivity have been researched. It has been established that an increase in the thermobaric synthesis temperature leads to a decrease in the Young’s modulus value. Specific static conductivity values have been determined; charge carrier activation enthalpies На have been calculated. The Curie temperature of the samples has been determined to decrease with an increase in tantalum content. A Ferroelectric ceramic solid solution Li0.17Na0.83Ta0.1Nb0.9O3 was shown to undergo four structure phase transitions in the temperature range 300-820 К. A Li0.17Na0.83Ta0.1Nb0.9O3 has been shown to be a high temperature superionic. Possible mechanisms of the detected phenomena are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

6-13

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. N. Palatnikov, V. V. Efremov, N. V. Sidorov, E. Yu. Obryadina, O. V. Makarova, V. A. Sandler, Structure and properties of the Li0.125Na0.875NbO3 solid solution synthesized at atmospheric and high pressures, Inorganic Materials. 50(11) (2014) 1131-1139.

DOI: 10.1134/s0020168514110132

Google Scholar

[2] B. Hardiman, R. M. Henson, C. P. Peeves, and R. R. Zeyfand, Hot pressing of sodium lithium niobate ceramic with perovskite-type structures, Ferroelectrics. 12(1) (1976) 157-159.

DOI: 10.1080/00150197608241414

Google Scholar

[3] N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, V. T. Kalinnikov, Ferroelectric solid solutions LiхNa1-хТауNb1-уO3 synthesis, structure, properties, Nauka, Moscow, (2015).

Google Scholar

[4] M. N. Palatnikov, N. V. Sidorov, V. V. Efremov, O. G. Gromov, Yu. V. Radyush, High-pressure synthesis, structure, and electrical properties of LixNa1−xNbO3 solid solutions, Inorganic Materials. 44 (11) (2008) 1240-1243.

DOI: 10.1134/s0020168508110186

Google Scholar

[5] N. M. Olekhnovich, Yu.V. Radyush, N. P. Vyshatko, M. N. Palatnikov, Thermal hysteresis of the permittivity of Li0.12Na0.88TayNb1−yO3 (y > 0.7) prepared under high or normal pressure, Physics of the Solid State. 47(4) (2005) 703-709.

DOI: 10.1134/1.1913984

Google Scholar

[6] N. V. Sidorov, M. N. Palatnikov, N. A. Golubyatnik, A. Pushkarev, Manifestation of a ferroelectric-antiferroelectric phase transition in Li0.12Na0.88Ta0.4Nb0.6O3 in its raman scattering spectra, Optics and Spectroscopy. 97(3) (2004) 388-393.

DOI: 10.1134/1.1803643

Google Scholar

[7] H. D. Megaw, The seven phases of sodium niobate, Ferroelectrics. 7(1) (1974) 87-89.

DOI: 10.1080/00150197408237956

Google Scholar

[8] J. Lefkowitz, K. Lukazewicz, H. D. Megaw, The high-temperature phases of sodium niobate and the nature of transitions in pseudosymmetric structures, Acta Crystallographica. 20 (1966) 670-683.

DOI: 10.1107/s0365110x66001592

Google Scholar

[9] A. M. Glazer, H. D. Megaw, Studies of the lattice parameters and domains in the phase transitions of NaNbO3, Acta Crystallographica. A29 (1973) 489-495.

Google Scholar

[10] K. Ishida, G. Honjo, Soft Modes and Superlattice Structures in NaNbO3, Journal of the Physical Society of Japan. 34 (1973) 1279-1288.

DOI: 10.1143/jpsj.34.1279

Google Scholar

[11] J. Chen, D. Feng, In situ TEM studies of para—ferro phase transitions in NaNbO3, Physica status solidi (a). 109(2) (1988) 427-434.

DOI: 10.1002/pssa.2211090208

Google Scholar

[12] M. Ahtee, I. Unonics, The structure of NaTaO3 by X-ray powder diffraction, Acta Crystallographica. A33 (1977) 150-154.

Google Scholar

[13] L. A. Reznichenko, L. A. Shilkina, Investigation into morphotropic zones in the system of NaNbO3-ZiNbO3 solid solutions, Izv. USSR Academy of Sciences, ser. physical. 39(5) (1975) 1118-1121.

Google Scholar

[14] R. Jimenez, M. L. Sanjuan, B. Jimenez, Stabilization of the ferroelectric phase and relaxor-like behaviour in low Li content sodium niobates, Journal of Physics: Condensed Matter. 16(41) (2004) 7493-7510.

DOI: 10.1088/0953-8984/16/41/027

Google Scholar

[15] Yu. I. Yuzyuk, E. S. Gagarina, L. A. Reznitchenko, L. Hennet, D. Thiaudiere, Synchrotron x-ray diffraction and Raman scattering investigations of (LixNa1-x)NbO3 solid solutions: Evidence of the rhombohedral phase, Physical Review B. 69 (2004) 144105-144106.

Google Scholar

[16] Y. Shiratori, A. Magrez, W. Fischer, Ch. Pithan, R. Waser, Temperature-induced phase transitions in micro-, submicro-, and nanocrystalline NaNbO3, The Journal of Physical Chemistry C. 111(50) (2007) 18493-18502.

DOI: 10.1021/jp0738053

Google Scholar

[17] I. P. Raevskii, L. A. Reznichenko, V. G. Smotrakov, V. V. Eremkin, M. A. Malitskaya, L. A. Shilkina and E. M. Kuznetsova, New data on the polymorphous transformations and T-x phase diagrams of Na1-xLi xNbO3 and Na1-xKxNbO3 solid solutions, Ferroelectrics. 265(1) (2002) 129-137.

DOI: 10.1080/00150190208260612

Google Scholar

[18] L. A. Reznichenko, L. A. Shilkina, E. S. Gagarina, I. P. Raevskii, E. M. Kuznetsova, V. V. Akhnazarova, E. A. Dul'kin, Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300–500 K, Crystallography Reports. 48(3) (2003) 448-456.

DOI: 10.1134/1.1578130

Google Scholar

[19] M. V. Gorev, V. S. Bondarev, I. N. Flerov, S. I. Raevskaya, M. A. Malitskaya, I. P. Raevskii, Thermophysical study of structural phase transitions in Na0.95Li0.05NbO3 solid solution, Bulletin of the Russian Academy of Sciences: Physics. 80(9) (2016) 1046-1050.

DOI: 10.3103/s1062873816090148

Google Scholar