Magnetic Volume Effect of Hydrogen Diffusion in Palladium

Article Preview

Abstract:

The electronic and magnetic properties of palladium hydrogen are investigated using first-principles spin-polarized density functional theory. By studying the magnetic moments and electronic structures of hydrogen atoms diffusing in face-centered cubic structure of transition metal Pd, we found that the results of magnetic moments are exactly the same in the two direct octahedral interstitial site-octahedral interstitial site diffusion paths-i.e. the magnetic moments are the largest in the octahedral interstitial site, and the magnetic moments are the lowest in saddle point positions. We also studied on the density of states of some special points, with the result that the density of states near the Fermi level is mainly contributed by 4d electrons of Pd and the change of magnetic moments with the cell volume in the unit cell of transition metal Pd with a hydrogen atom.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

29-33

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang A. G., Wang Y. J., Han X. F., and Zhang W. S. The effect of Pd doped in Ru layer on the interlayer coupling in Co/RuPd multilayers, Chin. Phys. 2004; 13: 2153.

DOI: 10.1088/1009-1963/13/12/031

Google Scholar

[2] Pietrzak R., Szatanik R., Szuszkiewicz M. Investigation of diffusion and electromigration of hydrogen in palladium and PdAg alloy. J. Alloys Compd [J], 1999, 282: 130.

DOI: 10.1016/s0925-8388(98)00694-x

Google Scholar

[3] Piotr Z., Ewa M. Diffusion coefficient of hydrogen in α-phase palladium and palladium-platinum alloy. Phys. Chem [J], 2001, 3: 2935.

DOI: 10.1039/b102114l

Google Scholar

[4] Worsham J. E., Wilkinson M. K., Shull C. G. Neitron-Diffraction Observations on the Palladium-hydrogen and Palladium-deuterium systems. J. Phys. Chem. Solid [J], 1957, 3: 303.

DOI: 10.1016/0022-3697(57)90033-1

Google Scholar

[5] Chan C. T., and Louie S.G. Self-consistent pseudo potential calculation of the electronic structure of PdH and Pd4H, Phys. Rev. B. 1983; 27: 3325.

Google Scholar

[6] D. Tomanek, Z. Sun, S. G. Louie. Ab initio calculation of chemisorptions systems: H on Pd (001) and Pd(110). Phys. Rev. B [J], 1991, 43(6): 4699.

DOI: 10.1103/physrevb.43.4699

Google Scholar

[7] C. Elsasser, M. Fahnle, L. Schimmele. Range of forces on host-metal atoms around interstitial hydrogen in Pd and Nb. Phys Rev B [J], 1994, 50: 5155.

DOI: 10.1103/physrevb.50.5155

Google Scholar

[8] Y. Wang, S. N. Sun, M. Y. Chou. Total-energy study of hydrogen ordering in PdHx(0<x<1). Phys. Rev. B [J], 1996, 53: 1-4.

Google Scholar

[9] Cui X., Wang J. T., Liang X. X., and Zhao G. Z. Ab initio studies on the structural and magnetic properties of RhH, Solid State Commun. 2009; 149: 322.

DOI: 10.1016/j.ssc.2008.11.031

Google Scholar

[10] Cui X., Liang X. X, Wang J. T., and Zhao G. Z. Ab initio studies on the mechanic and magnetic properties of PdHx, Chin. Phys. B 2011; 20: 026201.

Google Scholar

[11] Sarantuya N., Cui X., Wang Z. P. First-principles study of hydrogen diffusion in transition metal palladium, Modern Phys. Lett. B 2015; 29:1550064.

DOI: 10.1142/s0217984915500645

Google Scholar

[12] Monkhorst H. J., and Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B.1976; 13: 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[13] Perdew J. P., Burke K., and Ernzerhof M. Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996; 77: 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] Mulliken R S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies, J. Chem. Phys.1955; 23: 1841.

DOI: 10.1063/1.1740589

Google Scholar

[15] Houari A., Matar S. F., Eyert V. Electronic structure and crystal phase stability of palladium hydrides, J. Appl. Phys. 2014; 116: 173706.

DOI: 10.1063/1.4901004

Google Scholar

[16] Mehl M. J., and Papaconstantopouls D. A. Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals, Phys.Rev. B.1996; 54:4519.

DOI: 10.1103/physrevb.54.4519

Google Scholar

[17] Korling M., and Haglund J. Cohesive and electronic properties of transition metals: The generalized gradient approximation, Phys. Rev. B.1992; 45: 13293.

DOI: 10.1103/physrevb.45.13293

Google Scholar

[18] Sigals M., Papaconcontantopoulos D. A., and Bavalis N. C. Total energy and band structure of the 3d, 4d, and 5d metals, Phys.Rev.B.1992; 45:5777.

Google Scholar

[19] Tomanek D., Sun Z., and Steven G. L. Ab initio calculation of chemisorption systems: H on Pd (001) and Pd (110), Phys. Rev. B. 1991; 43:4699.

DOI: 10.1103/physrevb.43.4699

Google Scholar