Laser Printing of Chiral Silicon Nanoprotrusions by Asymmetric Donut-Shaped Femtosecond Pulses

Article Preview

Abstract:

Here, we showed formation of chiral nanoprotrusions upon direct laser ablation of bulk crystalline silicon (c-Si) wafer with single femtosecond (fs) pulses having asymmetric donut-shaped intensity profile. Breaking circular symmetry of the irradiating donut-shaped fs-pulse beam was demonstrated to switch the geometry of formed surface nanoprotrusions from regular to chiral, while the chirality of the obtained Si nanostructures was found to promote with a degree of asymmetry of the laser beam. The obtained experimental results explain, for the first time, the formation of previously reported chiral c-Si nanostructures produced via donut-shaped beam ablation in terms of uneven helical flow of laser-melted Si material caused by asymmetry of initial intensity and temperature pattern on laser-irradiated Si surface. Our findings open a pathway towards easy-to-implement inexpensive fabrication of chiral all-dielectric nanostructures for advanced nanophotonic applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

107-112

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Vaughan, D. Willetts, Interference properties of a light beam having a helical wave surface, Opt. Commun. 30 (1979) 263–267.

DOI: 10.1016/0030-4018(79)90350-x

Google Scholar

[2] R. Paez-Lopez, U. Ruiz, V. Arrizon, R. Ramos-Garcia, Optical manipulation using optimal annular vortices, Opt. Lett. 41 (2016) 4138–4141.

DOI: 10.1364/ol.41.004138

Google Scholar

[3] Y. Ma, G. Rui, B. Gu, Y. Cui, Trapping and manipulation of nanoparticles using multifocal optical vortex metalens, Sci. Rep. 7 (2017) 14611.

DOI: 10.1038/s41598-017-14449-y

Google Scholar

[4] A. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. Lavery, M. Tur, S. Ramachandran, A. Molisch, N. Ashrafi, S. Ashrafi, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics 7 (2015) 66–106.

DOI: 10.1364/aop.7.000066

Google Scholar

[5] J. Liaw, C. Chien, K. Liu, Y. Ku, M. Kuo, 3D optical vortex trapping of plasmonic nanostructure, Sci. Rep. 8 (2018) 12673.

DOI: 10.1038/s41598-018-30948-y

Google Scholar

[6] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light. Sci. & Appl. 8 (2019) 1–29.

DOI: 10.1038/s41377-019-0194-2

Google Scholar

[7] M. Cheng, L. Guo, J. Li, Q. Huang, Propagation properties of an optical vortex carried by a bessel–gaussian beam in anisotropic turbulence, J. Opt. Soc. Am. A 33 (2016) 1442–1450.

DOI: 10.1364/josaa.33.001442

Google Scholar

[8] A. Porfirev, A. Ustinov, S. Khonina, Polarization conversion when focusing cylindrically polarized vortex beams, Sci. Rep. 6 (2016) 6.

DOI: 10.1038/s41598-016-0015-2

Google Scholar

[9] X. Liu, X. Peng, L. Liu, G. Wu, C. Zhao, F. Wang, Y. Cai, Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle, Appl. Phys. Lett.110 (2017) 181104.

DOI: 10.1063/1.4982786

Google Scholar

[10] K. Sakai, K. Nomura, T. Yamamoto, K. Sasaki, Excitation of multipole plasmons by optical vortex beams, Sci. Rep. 5 (2015) 8431.

DOI: 10.1038/srep08431

Google Scholar

[11] N. Litchinitser, Structured light meets structured matter, Science 337 (2012) 1054–1055.

DOI: 10.1126/science.1226204

Google Scholar

[12] K. Anoop, R. Fittipaldi, A. Rubano, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, S. Amoruso, Direct femtosecond laser ablation of copper with an optical vortex beam, J. Appl. Phys. 116 (2014) 113102.

DOI: 10.1063/1.4896068

Google Scholar

[13] J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate, Sci. Rep. 5 (2015) 17929.

DOI: 10.1038/srep17929

Google Scholar

[14] J. Nivas, S. He, Z. Song, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, Femtosecond laser surface structuring of silicon with gaussian and optical vortex beams, Appl. Surf. Sci. 418 (2017) 565–571.

DOI: 10.1016/j.apsusc.2016.10.162

Google Scholar

[15] A. Zhizhchenko, S. Syubaev, A. Berestennikov, A. Yulin, A. Porfirev, A. Pushkarev, I. Shishkin, K. Golokhvast, A. Bogdanov, A. Zakhidov, A. Kuchmizhak, Y. Kivshar, S. Makarov, Single-mode lasing from imprinted halide-perovskite microdisks, ACS Nano 13 (2019) 4140-4147.

DOI: 10.1021/acsnano.8b08948

Google Scholar

[16] F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, T. Omatsu, Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle, Sci. Rep. 6 (2016) 21738.

DOI: 10.1038/srep21738

Google Scholar

[17] A. Ambrosio, P. Maddalena, L. Marrucci, Molecular model for light-driven spiral mass transport in azopolymer films, Phys. Rev. Lett. 110 (2013) 146102.

DOI: 10.1103/physrevlett.110.146102

Google Scholar

[18] A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, P. Maddalena, Light-induced spiral mass transport in azo-polymer films under vortex beam illumination, Nat. Commun. 3 (2012) 989.

DOI: 10.1038/ncomms1996

Google Scholar

[19] J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, J. Li, D. Wu, J. Chu, Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material, Light. Sci. & Appl. 6 (2017) e17011.

DOI: 10.1038/lsa.2017.11

Google Scholar

[20] S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, S. Kudryashov, Direct laser printing of chiral plasmonic nanojets by vortex beams, Opt. Express 25 (2017) 10214–10223.

DOI: 10.1364/oe.25.010214

Google Scholar

[21] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, Using optical vortex to control the chirality of twisted metal nanostructures, Nano Lett. 12 (2012) 3645–3649.

DOI: 10.1021/nl301347j

Google Scholar

[22] K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, T. Omatsu, Transfer of light helicity to nanostructures, Phys. Rev. Lett. 110 (2013) 143603.

DOI: 10.1103/physrevlett.110.143603

Google Scholar

[23] T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, K. Dholakia, A new twist for materials science: The formation of chiral structures using the angular momentum of light, Adv. Opt. Mater. 7 (2019) 1801672.

DOI: 10.1002/adom.201801672

Google Scholar

[24] S. Syubaev, A. Porfirev, A. Zhizhchenko, O. Vitrik, S. Kudryashov, S. Fomchenkov, S. Khonina, A. Kuchmizhak, Zero-orbital-angular momentum laser printing of chiral nanoneedles, Opt. Lett. 42 (2017) 5022–5025.

DOI: 10.1364/ol.42.005022

Google Scholar

[25] S. Syubaev, A. Zhizhchenko, O. Vitrik, A. Porfirev, S. Fomchenkov, S. Khonina, S. Kudryashov, A. Kuchmizhak, Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses, Appl. Surf. Sci. 470 (2019) 526–534.

DOI: 10.1016/j.apsusc.2018.11.128

Google Scholar

[26] M. Rahimian, F. Bouchard, H. Al-Khazraji, E. Karimi, P. Corkum, V. Bhardwaj, Polarization dependent nanostructuring of silicon with femtosecond vortex pulse, APL Photonics 2 (2017) 086104.

DOI: 10.1063/1.4999219

Google Scholar

[27] D. Pavlov, S. Syubaev, A. Cherepakhin, A. Sergeev, O. Vitrik, A. Zakharenko, P. Danilov, I. Saraeva, S. Kudryashov, A. Porfirev, A. Kuchmizhak, Ultrafast laser printing of self-organized bimetallic nanotextures for multi-wavelength biosensing, Sci. Rep. 8 (2018) 16489.

DOI: 10.1038/s41598-018-34784-y

Google Scholar