[1]
V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rew. 2 (2015) 040604. https://doi.org/10.1063/1.4928591.
DOI: 10.1063/1.4928591
Google Scholar
[2]
K. Lеngyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar, Growth, defect structure, and THz application of stoichiometric lithium niobate, Appl. Phys. Rew. 2 (2015) 040601-040628. doi.org/10.1063/1.4929917.
DOI: 10.1063/1.4929917
Google Scholar
[3]
Yu. S. Kuzminov, Electro-optical and nonlinear-optical lithium niobate crystal, Nauka, Moscow, 1987. (In Russian).
Google Scholar
[4]
R.N. Balasanyan, E. S. Vartanyan, V. T. Gabrielyan, L.M. Kazaryan, A method of growing lithium niobate crystals. Auth. certificate №845506 from 0.6.03.81 г. Priority from 233.03.79. Open Publishing Formula 27.02.2000. (In Russian).
Google Scholar
[5]
C. Huang, S. Wang, and N. Ye, Subsolidus phase relations and the crystallization region of LiNbO3 in the system Li2O–B2O3–Nb2O5, J. Alloys Comp. 502, 1 (2010) 211-214. https://doi.org/10.1016/j.jallcom.2010.04.146.
DOI: 10.1016/j.jallcom.2010.04.146
Google Scholar
[6]
M. P. F. Graça, M. G. Ferreira da Silva, M. A. Valente, Influence of thermal and thermoelectric treatments on structure and electric properties of B2O3–Li2O–Nb2O5 glasses, J. Non-Cryst. Sol. 354 (2008) 901-908.
DOI: 10.1016/j.jnoncrysol.2007.08.016
Google Scholar
[7]
S. Uda, Activities and equilibrium partition coefficients of solute constituents in the melts of oxide materials with and without solid solution, J. Cryst. Growth. 310, 16 (2008) 3864-3868 https://doi.org/10.1016/j.jcrysgro.2008.05.042.
DOI: 10.1016/j.jcrysgro.2008.05.042
Google Scholar
[8]
M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, V. T. Kalinnikov, Graned charge for growth of lithium niobate single crystals, Perspekt. Mater. 2 (2011) 93-97. (In Russian).
DOI: 10.1080/10584587.2011.570678
Google Scholar
[9]
M. N. Palatnikov, N. V. Sidorov, Some fundamental points of technology of lithium niobate and lithium tantalite single crystals, In: Oxide electronics and functional properties of transition metal oxides, NOVA Sience Publichers, USA, 2014, рр. 31-168.
Google Scholar
[10]
M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, O. E. Kravchenko, A. A. Yanichev, N. V. Sidorov, Structure and optical homogeneity of LiNbO3〈Mg〉 crystals grown from different charges, Inorg. Mater. 49, 7 (2013) 715-720.
DOI: 10.1134/s0020168513060083
Google Scholar
[11]
N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, R. A. Titov, N. A. Teplyakova, Structural Disorder of LiNbO3:B Crystals and its Manifestation in Raman Spectra, J. Appl. Spectr., 83, 5 (2016) 750-756.
DOI: 10.1007/s10812-016-0358-2
Google Scholar
[12]
N. V. Sidorov, N. A. Teplyakova, R. A. Titov, and M. N. Palatnikov, Structural Features, Physicochemical, and Optical Characteristics of Lithium Niobate Crystals Grown from Boron-Doped Melts, Technical Physics. 63, 12 (2018) 1758–1766.
DOI: 10.1134/s1063784218120198
Google Scholar
[13]
H. Can, W. Shichao, Y. Ning, Subsolidus phase relations and the crystallization region of LiNbO3 in the system Li2O–B2O3–Nb2O5, J. Alloys Comp. 502 (2010) 211-214.
DOI: 10.1016/j.jallcom.2010.04.146
Google Scholar
[14]
H. Kimura, H. Koizumi, T. Uchidab, S. Uda, Influence of impurity doping on the partitioning of intrinsic ionic species during the growth of LiNbO3 crystal from the melt, J. Cryst. Growth. 311 (2009) 1553—1558.
DOI: 10.1016/j.jcrysgro.2008.09.178
Google Scholar
[15]
S. Fujii, S. Uda, Growth of congruent-melting lithium tantalate crystal with stoichiometric structure by MgO doping, J. Cryst. Growth. 383 (2013) 63-66. http://dx.doi.org/10.1016/j.jcrysgro.2013.08.020.
DOI: 10.1016/j.jcrysgro.2013.08.020
Google Scholar
[16]
H. Kimura, S. Uda, Conversion of non-stoichiometry of LiNbO3 to constitutional stoichiometry by impurity doping, J. Cryst. Growth. 311 (2009) 4094-4101.
DOI: 10.1016/j.jcrysgro.2009.06.038
Google Scholar
[17]
C. Koyama, J. Nozawa. К. Maeda, K. Fujiwara, and S. Uda, Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations, J. Appl. Phys. 117 (2015) 014102. https://doi.org/10.1063/1.4905286.
DOI: 10.1063/1.4905286
Google Scholar
[18]
S. Uda, W. A. Tiller, The dissociation and ionization of LiNbO3 melts, J. Cryst. Growth. 121 (1992) 155-190.
DOI: 10.1016/0022-0248(92)90185-l
Google Scholar
[19]
H. M. O'Bryan, P. K. Gallagher, C. D. Brandle, Congruent composition and Li rich phase boundary of LiNbO3, J. Amer. Ceram. Soc. 68, 9 (1985) 493–496.
DOI: 10.1111/j.1151-2916.1985.tb15816.x
Google Scholar
[20]
M. N. Palatnikov, N. V. Sidorov, V. I. Skiba [et al.], Effects of nonstoichiometry and doping on the Curie temperature and defect structure of lithium niobate, Inorg. Mater. 36, 5 (2000) 489-493.
DOI: 10.1007/bf02758054
Google Scholar
[21]
N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, Comparative study of defect structures in lithium niobate with different compositions, J. Solid State Chem. 101, 2 (1992) 340-352.
DOI: 10.1016/0022-4596(92)90189-3
Google Scholar
[22]
P. F. Bordui, R. G. Norwood, D. H. Jundt and M. M. Fejer, Preparation and characterization of off-congruent lithium niobate crystals, J. Appl. Phys. 71 (1992) 875- 879.
DOI: 10.1063/1.351308
Google Scholar
[23]
J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller & E. Diéguez, Hydrogen in Lithium Niobate, Adv. Phys. 45, 5 (1996) 349-392. doi 10.1080/00018739600101517.
DOI: 10.1080/00018739600101517
Google Scholar
[24]
K. Lеngyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar, Growth, defect structure, and THz application of stoichiometric lithium niobate, Appl. Phys. Rew. 2 (2015) 040601-040628. doi.org/10.1063/1.4929917.
DOI: 10.1063/1.4929917
Google Scholar
[25]
M. D. Fontana, P. Bourson, Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices, Appl. Phys. Rev. 2 (2015) 040602-1-040602-14. https://doi.org/10.1063/1.4934203.
DOI: 10.1063/1.4934203
Google Scholar