Au Nanoparticle-Decorated TiO2 Nanospheres Produced by Laser Reshaping in Water

Article Preview

Abstract:

Here, we demonstrate formation of spherical-shaped amorphous titania (TiO2) nanoparticles decorated with Au nanoclusters via nanosecond pulse ablation (7-ns, 532-nm wavelength) of commercially available TiO2 nanopowders dispersed in an aqueous solution of chloroauric acid (HAuCl4). Generation of such hybrid nanostructures was found to be caused by laser-induced remelting of the initial TiO2 nanoparticles, stimulated by Au nanoclusters that can adsorbed on their surface and boost light-to-heat conversion process in optically transparent titania. The morphology and chemical composition of the obtained hybrid nanomaterials were studied in detail via scanning electron microscopy, Raman spectroscopy and Energy Dispersive X-ray spectroscopy. The average size and number of Au nanoclusters reduced on the TiO2 nanoparticle surface was shown to be tuned by varying the initial nanoparticles/HAuCl4 concentration ratio. Spectroscopic measurements of single hybrid nanoparticles scattering, as well as the corresponding numerical calculations of electromagnetic fields structure near their surface indicate synthesized functional nanomaterials as extremely promising for numerous applications of modern optics, optoelectronics and nanophotonics, e.g., realization of advanced chemo-and biosensing platforms, as well as of new-generation solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

113-120

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, Berlin, (2007).

Google Scholar

[2] A. Kuchmizhak, S. Gurbatov, Yu. Kulchin, O. Vitrik, Plasmon mode excitation and photoluminescence enhancement on silver nanoring, Opt. Comm. 356 (2015) 1.

DOI: 10.1016/j.optcom.2015.07.042

Google Scholar

[3] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotech. 10 (2015) 937.

DOI: 10.1038/nnano.2015.186

Google Scholar

[4] A. Kuchmizhak, S. Gurbatov, Yu. Kulchin, O. Vitrik, Plasmon mode excitation and photoluminescence enhancement on silver nanoring, Opt. Comm. 356 (2015) 1.

DOI: 10.1016/j.optcom.2015.07.042

Google Scholar

[5] D. Pavlov, S. Syubaev, A. Kuchmizhak, S. Gurbatov, O. Vitrik, E. Modin, S. Kudryashov, X. Wang, S. Juodkazis, M. Lapine, Direct laser printing of tunable IR resonant nanoantenna arrays, App. Surf. Sci. 469 (2019) 514.

DOI: 10.1016/j.apsusc.2018.11.069

Google Scholar

[6] Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk'yanchuk, Directional visible light scattering by silicon nanoparticles, Nat. Commun. 4 (2013) 1527.

DOI: 10.1038/ncomms2538

Google Scholar

[7] D.A. Zuev, S.V. Makarov, I.S. Mukhin, V.A. Milichko, S.V. Starikov, I.A. Morozov, I.I. Shishkin, A.E. Krasnok, P.A. Belov, Fabrication of Hybrid Nanostructures via Nanoscale Laser‐Induced Reshaping for Advanced Light Manipulation, Adv. Mater. 28 (2016) 3087.

DOI: 10.1002/adma.201505346

Google Scholar

[8] R. Jiang, B. Li, C. Fang, J. Wang, Metal/semiconductor hybrid nanostructures for plasmon‐enhanced applications, Adv. Mater. 26 (2014) 5274.

DOI: 10.1002/adma.201400203

Google Scholar

[9] W. Liu, A.E. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, Broadband unidirectional scattering by magneto-electric core–shell nanoparticles, ACS Nano 6 (2012) 5489.

DOI: 10.1021/nn301398a

Google Scholar

[10] H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, H. Chen, Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement, ACS Nano 9 (2015) 436.

DOI: 10.1021/nn505606x

Google Scholar

[11] A. Devilez, B. Stout, N. Bonod, Compact metallo-dielectric optical antenna for ultra-directional and enhanced radiative emission, ACS Nano 4 (2010) 3390.

DOI: 10.1021/nn100348d

Google Scholar

[12] E. Rusak, I. Staude, M. Decker, J. Sautter, A.E. Miroshnichenko, D.A. Powell, D.N. Neshev, Y.S. Kivshar, Hybrid nanoantennas for directional emission enhancement, Appl. Phys. Lett. 105 (2014) 221109.

DOI: 10.1063/1.4903219

Google Scholar

[13] T.C. Damato, C.C. de Oliveira, R.A. Ando, P.H. Camargo, A Facile Approach to TiO2 Colloidal Spheres Decorated with Au Nanoparticles Displaying Well-Defined Sizes and Uniform Dispersion, Langmuir 29 (2013) 1642.

DOI: 10.1021/la3045219

Google Scholar

[14] S.T. Kochuveedu, D.P. Kim, D.H. Kim, Surface-Plasmon-Induced Visible Light Photocatalytic Activity of TiO2 Nanospheres Decorated by Au Nanoparticles with Controlled Configuration, J. Phys. Chem. C 116 (2012) 2500.

DOI: 10.1021/jp209520m

Google Scholar

[15] Y. Wang, H.B. Fang, Y.Z. Zheng, R. Ye, X. Tao, J.F. Chen, Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity, Nanoscale 7 (2015) 19118.

DOI: 10.1039/c5nr06359k

Google Scholar

[16] R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373.

DOI: 10.1021/cr100449n

Google Scholar

[17] D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev. 117 (2017) 3990.

DOI: 10.1021/acs.chemrev.6b00468

Google Scholar

[18] S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T. dos Santos Rolo, A. Plech, Pulsed laser ablation in liquids: Impact of the bubble dynamics on particle formation, J. Colloid Interface Sci. 489 (2017) 106.

DOI: 10.1016/j.jcis.2016.08.030

Google Scholar

[19] F. Taccogna, M. Dell'Aglio, M. Rutigliano, G. Valenza, A. De Giacomo, On the growth mechanism of nanoparticles in plasma during pulsed laser ablation in liquids, Plasma Sources Sci. Technol. 26 (2017) 045002.

DOI: 10.1088/1361-6595/aa595b

Google Scholar

[20] E.V. Barmina, G.A. Shafeev, Formation of core–shell Fe@Al nanoparticles by laser irradiation of a mixture of colloids in ethanol, Quantum Electron. 48 (2018) 637.

DOI: 10.1070/qel16621

Google Scholar

[21] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S.A. Kulinich, X.W. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544.

DOI: 10.1021/acs.langmuir.8b02837

Google Scholar

[22] M. Honda, T. Goto, T. Owashi, A.G. Rozhin, S. Yamaguchi, T. Ito, S.A. Kulinich, ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media, Phys. Chem. Chem. Phys. 18 (2016) 23628.

DOI: 10.1039/c6cp04556a

Google Scholar

[23] H.B. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S.K. Yang, J.P. He, W.P. Cai, Nanomaterials via laser ablation/irradiation in liquid: a review, Adv. Funct. Mater. 22 (2012) 1333.

DOI: 10.1002/adfm.201102295

Google Scholar

[24] D.A. Goncharova, T.S. Kharlamova, I.N. Lapin, V.A. Svetlichnyi, Chemical and Morphological Evolution of Copper Nanoparticles Obtained by Pulsed Laser Ablation in Liquid, J. Phys. Chem. C 123 (2019) 21731.

DOI: 10.1021/acs.jpcc.9b03958

Google Scholar

[25] S.A. Kulinich, T. Kondo, Y. Shimizu, T. Ito, Pressure effect on ZnO nanoparticles prepared via laser ablation in water, J. Appl. Phys. 113 (2013) 033509.

DOI: 10.1063/1.4775733

Google Scholar

[26] N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S.O. Gurbatov, S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles, Appl. Surf. Sci. 507 (2020) 145169.

DOI: 10.1016/j.apsusc.2019.145169

Google Scholar

[27] I.N. Saraeva, N. Van Luong, S.I. Kudryashov, A.A. Rudenko, R.A. Khmelnitskiy, A.L. Shakhmin, A.Y. Kharin, A.A. Ionin, D.A. Zayarny, D.H. Tung, P.V. Duong, P.H. Minh, Laser synthesis of colloidal Si@ Au and Si@ Ag nanoparticles in water via plasma-assisted reduction, J. Photochem. Photobiol. A 360 (2018) 125.

DOI: 10.1016/j.jphotochem.2018.04.004

Google Scholar

[28] P. Liu, H. Chen, H. Wang, J. Yan, Z. Lin, G. Yang, Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection, J. Phys. Chem. C 119 (2015) 1234.

DOI: 10.1021/jp5111482

Google Scholar

[29] C. Rodrigues, J. Bobb, M. John, S. Fisenko, M. El-Shall, K. Tibbetts, Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl 4]−, Phys. Chem. Chem. Phys., 20 (2018) 28465.

DOI: 10.1039/c8cp05774e

Google Scholar

[30] M. Tian, M. Mahjouri-Samani, G. Gyula Eres, R. Sachan, M. Yoon, M.F. Chisholm, K. Wang, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, G. Duscher, Structure and Formation Mechanism of Black TiO2 Nanoparticles, ACS Nano 9 (2015) 10482.

DOI: 10.1021/acsnano.5b04712

Google Scholar

[31] V.A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S.S. Kanakkillam, D.A. Avellaneda, J.A. Aguilar Martinez, T.K. Das Roya, N.A. Ramos-Delgado, Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid, Appl. Surf. Sci. 483 (2019) 156.

DOI: 10.1016/j.apsusc.2019.03.302

Google Scholar

[32] A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science 354 (2016) 846.

DOI: 10.1126/science.aag2472

Google Scholar

[33] A.O. Larin, A. Nominé, E.I. Ageev, J. Ghanbaja, L.N. Kolotova, S.V. Starikov, S. Bruyère, T. Belmonte, S.V. Makarov, D.A. Zuev, Plasmonic nanosponges filled with silicon for enhanced white light emission, Nanoscale 12 (2020) 1013.

DOI: 10.1039/c9nr08952g

Google Scholar

[34] S. Gurbatov, O. Vitrik, Y. Kulchin, A. Kuchmizhak, Mapping the refractive index with single plasmonic nanoantenna, Sci. Rep. 8 (2018) 1.

DOI: 10.1038/s41598-018-21395-w

Google Scholar