[1]
S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, Berlin, (2007).
Google Scholar
[2]
A. Kuchmizhak, S. Gurbatov, Yu. Kulchin, O. Vitrik, Plasmon mode excitation and photoluminescence enhancement on silver nanoring, Opt. Comm. 356 (2015) 1.
DOI: 10.1016/j.optcom.2015.07.042
Google Scholar
[3]
A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotech. 10 (2015) 937.
DOI: 10.1038/nnano.2015.186
Google Scholar
[4]
A. Kuchmizhak, S. Gurbatov, Yu. Kulchin, O. Vitrik, Plasmon mode excitation and photoluminescence enhancement on silver nanoring, Opt. Comm. 356 (2015) 1.
DOI: 10.1016/j.optcom.2015.07.042
Google Scholar
[5]
D. Pavlov, S. Syubaev, A. Kuchmizhak, S. Gurbatov, O. Vitrik, E. Modin, S. Kudryashov, X. Wang, S. Juodkazis, M. Lapine, Direct laser printing of tunable IR resonant nanoantenna arrays, App. Surf. Sci. 469 (2019) 514.
DOI: 10.1016/j.apsusc.2018.11.069
Google Scholar
[6]
Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk'yanchuk, Directional visible light scattering by silicon nanoparticles, Nat. Commun. 4 (2013) 1527.
DOI: 10.1038/ncomms2538
Google Scholar
[7]
D.A. Zuev, S.V. Makarov, I.S. Mukhin, V.A. Milichko, S.V. Starikov, I.A. Morozov, I.I. Shishkin, A.E. Krasnok, P.A. Belov, Fabrication of Hybrid Nanostructures via Nanoscale Laser‐Induced Reshaping for Advanced Light Manipulation, Adv. Mater. 28 (2016) 3087.
DOI: 10.1002/adma.201505346
Google Scholar
[8]
R. Jiang, B. Li, C. Fang, J. Wang, Metal/semiconductor hybrid nanostructures for plasmon‐enhanced applications, Adv. Mater. 26 (2014) 5274.
DOI: 10.1002/adma.201400203
Google Scholar
[9]
W. Liu, A.E. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, Broadband unidirectional scattering by magneto-electric core–shell nanoparticles, ACS Nano 6 (2012) 5489.
DOI: 10.1021/nn301398a
Google Scholar
[10]
H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, H. Chen, Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement, ACS Nano 9 (2015) 436.
DOI: 10.1021/nn505606x
Google Scholar
[11]
A. Devilez, B. Stout, N. Bonod, Compact metallo-dielectric optical antenna for ultra-directional and enhanced radiative emission, ACS Nano 4 (2010) 3390.
DOI: 10.1021/nn100348d
Google Scholar
[12]
E. Rusak, I. Staude, M. Decker, J. Sautter, A.E. Miroshnichenko, D.A. Powell, D.N. Neshev, Y.S. Kivshar, Hybrid nanoantennas for directional emission enhancement, Appl. Phys. Lett. 105 (2014) 221109.
DOI: 10.1063/1.4903219
Google Scholar
[13]
T.C. Damato, C.C. de Oliveira, R.A. Ando, P.H. Camargo, A Facile Approach to TiO2 Colloidal Spheres Decorated with Au Nanoparticles Displaying Well-Defined Sizes and Uniform Dispersion, Langmuir 29 (2013) 1642.
DOI: 10.1021/la3045219
Google Scholar
[14]
S.T. Kochuveedu, D.P. Kim, D.H. Kim, Surface-Plasmon-Induced Visible Light Photocatalytic Activity of TiO2 Nanospheres Decorated by Au Nanoparticles with Controlled Configuration, J. Phys. Chem. C 116 (2012) 2500.
DOI: 10.1021/jp209520m
Google Scholar
[15]
Y. Wang, H.B. Fang, Y.Z. Zheng, R. Ye, X. Tao, J.F. Chen, Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity, Nanoscale 7 (2015) 19118.
DOI: 10.1039/c5nr06359k
Google Scholar
[16]
R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373.
DOI: 10.1021/cr100449n
Google Scholar
[17]
D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev. 117 (2017) 3990.
DOI: 10.1021/acs.chemrev.6b00468
Google Scholar
[18]
S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T. dos Santos Rolo, A. Plech, Pulsed laser ablation in liquids: Impact of the bubble dynamics on particle formation, J. Colloid Interface Sci. 489 (2017) 106.
DOI: 10.1016/j.jcis.2016.08.030
Google Scholar
[19]
F. Taccogna, M. Dell'Aglio, M. Rutigliano, G. Valenza, A. De Giacomo, On the growth mechanism of nanoparticles in plasma during pulsed laser ablation in liquids, Plasma Sources Sci. Technol. 26 (2017) 045002.
DOI: 10.1088/1361-6595/aa595b
Google Scholar
[20]
E.V. Barmina, G.A. Shafeev, Formation of core–shell Fe@Al nanoparticles by laser irradiation of a mixture of colloids in ethanol, Quantum Electron. 48 (2018) 637.
DOI: 10.1070/qel16621
Google Scholar
[21]
Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S.A. Kulinich, X.W. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544.
DOI: 10.1021/acs.langmuir.8b02837
Google Scholar
[22]
M. Honda, T. Goto, T. Owashi, A.G. Rozhin, S. Yamaguchi, T. Ito, S.A. Kulinich, ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media, Phys. Chem. Chem. Phys. 18 (2016) 23628.
DOI: 10.1039/c6cp04556a
Google Scholar
[23]
H.B. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S.K. Yang, J.P. He, W.P. Cai, Nanomaterials via laser ablation/irradiation in liquid: a review, Adv. Funct. Mater. 22 (2012) 1333.
DOI: 10.1002/adfm.201102295
Google Scholar
[24]
D.A. Goncharova, T.S. Kharlamova, I.N. Lapin, V.A. Svetlichnyi, Chemical and Morphological Evolution of Copper Nanoparticles Obtained by Pulsed Laser Ablation in Liquid, J. Phys. Chem. C 123 (2019) 21731.
DOI: 10.1021/acs.jpcc.9b03958
Google Scholar
[25]
S.A. Kulinich, T. Kondo, Y. Shimizu, T. Ito, Pressure effect on ZnO nanoparticles prepared via laser ablation in water, J. Appl. Phys. 113 (2013) 033509.
DOI: 10.1063/1.4775733
Google Scholar
[26]
N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S.O. Gurbatov, S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles, Appl. Surf. Sci. 507 (2020) 145169.
DOI: 10.1016/j.apsusc.2019.145169
Google Scholar
[27]
I.N. Saraeva, N. Van Luong, S.I. Kudryashov, A.A. Rudenko, R.A. Khmelnitskiy, A.L. Shakhmin, A.Y. Kharin, A.A. Ionin, D.A. Zayarny, D.H. Tung, P.V. Duong, P.H. Minh, Laser synthesis of colloidal Si@ Au and Si@ Ag nanoparticles in water via plasma-assisted reduction, J. Photochem. Photobiol. A 360 (2018) 125.
DOI: 10.1016/j.jphotochem.2018.04.004
Google Scholar
[28]
P. Liu, H. Chen, H. Wang, J. Yan, Z. Lin, G. Yang, Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection, J. Phys. Chem. C 119 (2015) 1234.
DOI: 10.1021/jp5111482
Google Scholar
[29]
C. Rodrigues, J. Bobb, M. John, S. Fisenko, M. El-Shall, K. Tibbetts, Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl 4]−, Phys. Chem. Chem. Phys., 20 (2018) 28465.
DOI: 10.1039/c8cp05774e
Google Scholar
[30]
M. Tian, M. Mahjouri-Samani, G. Gyula Eres, R. Sachan, M. Yoon, M.F. Chisholm, K. Wang, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, G. Duscher, Structure and Formation Mechanism of Black TiO2 Nanoparticles, ACS Nano 9 (2015) 10482.
DOI: 10.1021/acsnano.5b04712
Google Scholar
[31]
V.A. Zuñiga-Ibarra, S. Shaji, B. Krishnan, J. Johny, S.S. Kanakkillam, D.A. Avellaneda, J.A. Aguilar Martinez, T.K. Das Roya, N.A. Ramos-Delgado, Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid, Appl. Surf. Sci. 483 (2019) 156.
DOI: 10.1016/j.apsusc.2019.03.302
Google Scholar
[32]
A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science 354 (2016) 846.
DOI: 10.1126/science.aag2472
Google Scholar
[33]
A.O. Larin, A. Nominé, E.I. Ageev, J. Ghanbaja, L.N. Kolotova, S.V. Starikov, S. Bruyère, T. Belmonte, S.V. Makarov, D.A. Zuev, Plasmonic nanosponges filled with silicon for enhanced white light emission, Nanoscale 12 (2020) 1013.
DOI: 10.1039/c9nr08952g
Google Scholar
[34]
S. Gurbatov, O. Vitrik, Y. Kulchin, A. Kuchmizhak, Mapping the refractive index with single plasmonic nanoantenna, Sci. Rep. 8 (2018) 1.
DOI: 10.1038/s41598-018-21395-w
Google Scholar