Photoluminescence and Features of the Defective Structure of Nominally Pure Lithium Niobate Crystals

Article Preview

Abstract:

The photoluminescence intensity in lithium niobate crystals close to the stoichiometric composition is lower than in a congruent crystal was established. An increase in the Li / Nb ratio leads to a shift in the photoluminescence bands to the short-wavelength region of the spectrum and a change in the fundamental absorption edge of the crystals under study. It was shown that, in addition to point defects in the cationic sublattice, complex defects due to the presence of OH groups in the structure can also contribute to photoluminescence.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

121-127

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. V. Sidorov, T. R. Volk, B. N. Mavrin, V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectra, Polaritons, Nauka, Moscow, 2003. (In Russian).

Google Scholar

[2] Yu. S. Kuzminov, Electro-optical and nonlinear-optical lithium niobate crystal, Nauka, Moscow, 1987. (In Russian).

Google Scholar

[3] V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rew. 2, 4 (2015) 040604-0406015. https://doi.org/10.1063/1.4928591.

DOI: 10.1063/1.4928591

Google Scholar

[4] K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar, Growth, defect structure, and THz application of stoichiometric lithium niobate, Appl. Phys. Rew. 2 (2015) 040601-040628. doi.org/10.1063/1.4929917.

DOI: 10.1063/1.4929917

Google Scholar

[5] R.N. Balasanyan, E. S. Vartanyan, V. T. Gabrielyan, L.M. Kazaryan, A method of growing lithium niobate crystals. Auth. certificate №845506 from 06.03.81 Priority from 233.03.79. Open Publishing Formula 27.02.2000. (In Russian).

Google Scholar

[6] M. N. Palatnikov, N. V. Sidorov, Some fundamental points of technology of lithium niobate and lithium tantalite single crystals, In: Oxide electronics and functional properties of transition metal oxides, NOVA Sience Publichers, USA, 2014, pp.31-168.

Google Scholar

[7] M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, V. Ya. Shur, Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth. 291 (2006) 390-397.

DOI: 10.1016/j.jcrysgro.2006.03.022

Google Scholar

[8] M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, V. T. Kalinnikov, Graned charge for growth of lithium niobate single crystals, Perspekt. Mater. 2 (2011) 93-97. (In Russian).

DOI: 10.1080/10584587.2011.570678

Google Scholar

[9] N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. V. Syuy, E. O. Kile, and D. S. Shtarev, Photoelectric Fields and Band Gap in Doped Lithium Niobate Crystals, Inorg. Mater. 54, 6 (2018) 581-584. doi 10.1134/S0020168518060134.

DOI: 10.1134/s0020168518060134

Google Scholar

[10] M. H. J. Emond, M. Wiegel, G. Blasse, R. Feigelson, Luminescence of stoichiometric lithium niobate crystals, Mat. Res. Bull. 28, 10 (1993) 1025-1028. https://doi.org/10.1016/0025-5408(93)90140-9.

DOI: 10.1016/0025-5408(93)90140-9

Google Scholar

[11] T. Volk, M. Wöhlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin, Springer, (2008).

DOI: 10.1007/978-3-540-70766-0

Google Scholar

[12] M. Y. Salloum, O. S. Grunsky, A. A. Manrshina, A. S. Tverryanovich, and Yu. S. Tverryanovich, Investigation of lithium niobate composition by optical spectroscopy methods, Russ. Chem. Bull., Int. Ed. 58 (2009) 2228-2232. doi 1066_5285/09/5811_2228.

DOI: 10.1007/s11172-009-0310-1

Google Scholar

[13] I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, Electronic structure of deep centers in LiNbO3, Phys. Sol. St. 40, 6 (1998) 1012-1018.

DOI: 10.1134/1.1130478

Google Scholar

[14] J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller & E. Diéguez, Hydrogen in Lithium Niobate, Adv. Phys. 45, 5 (1996) 349-392. doi 10.1080/00018739600101517.

DOI: 10.1080/00018739600101517

Google Scholar

[15] S. V. Yevdokimov, A. V. Yatsenko, Investigation of the localization of H+ ions in stoichiometric LiNbO3, Cryst. Rep. 48, 4 (2003) 542-546.

DOI: 10.1134/1.1595175

Google Scholar

[16] C. Fischer, M. Wöhlecke, T. Volk, N. Rubinina, Influence of the Damage Resistant Impurities Zn and Mg on the UV‐Excited Luminescence in LiNbO3, Phys. stat. sol. (А). 137 (1993) 247-255. https://doi.org/10.1002/pssa.2211370122.

DOI: 10.1002/pssa.2211370122

Google Scholar

[17] S. Klauer, M. Wöhlecke, S. Kapphan, Influence of the H-D isotopic substitution on the protonic conductivity in LiNb03 crystal, Phys. Rev. B. 45 (1992) 2786-2799. https://doi.org/10.1103/PhysRevB.45.2786.

DOI: 10.1103/physrevb.45.2786

Google Scholar