Methods for Controlling the Surface Architecture of Coatings Formed by Plasma Electrolytic Oxidation

Article Preview

Abstract:

The paper considers approaches that can lead to the growth of micro-and nanocrystals on the surface of coatings formed on valve metals by plasma electrolytic oxidation (PEO). Among these approaches, there are the use of electrolytes-suspensions, the addition of organic compounds to the electrolytes, the thermal annealing of ‘PEO layer/metal’ composites, including impregnated ones.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

341-348

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73-93.

DOI: 10.1016/s0257-8972(99)00441-7

Google Scholar

[2] T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, Int. Mater. Rev. 64 (2019) 127-162.

DOI: 10.1080/09506608.2018.1466492

Google Scholar

[3] F. Patcas, W. Krysmann, Efficient catalysts with controlled porous structure obtained by anodic oxidation under spark-discharge, Appl. Catal. A-Gen. 316 (2007) 240-249.

DOI: 10.1016/j.apcata.2006.09.028

Google Scholar

[4] V.S. Rudnev, Multiphase anodic layers and prospects of their application, Protect. Met. 44 (2008) 263-272.

DOI: 10.1134/s0033173208030089

Google Scholar

[5] D. Quintero, O. Galvis, J.A. Calderon, J.G. Castano, F. Echeverria, Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation, Surf. Coat. Technol. 258 (2014) 1223-1231.

DOI: 10.1016/j.surfcoat.2014.06.058

Google Scholar

[6] I.V. Lukiyanchuk, V.S. Rudnev, L.M. Tyrina, Plasma electrolytic oxide layers as promising systems for catalysis, Surf. Coat. Technol. 307 (2016) 1183-1193.

DOI: 10.1016/j.surfcoat.2016.06.076

Google Scholar

[7] I.V. Lukiyanchuk, V.S. Rudnev, L.M. Tyrina, I.V. Chernykh, Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation, Appl. Surf. Sci. 315 (2014) 481-489.

DOI: 10.1016/j.apsusc.2014.03.040

Google Scholar

[8] V.N. Malyshev, K.M. Zorin, Features of microarc oxidation coatings formation technology in slurry electrolytes, Appl. Surf. Sci. 254 (2007) 1511-1516.

DOI: 10.1016/j.apsusc.2007.07.079

Google Scholar

[9] F.Y. Jin, P.K. Chu, H.H. Tong, J. Zhao, Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation, Appl. Surf. Sci. 253 (2006) 863-868.

DOI: 10.1016/j.apsusc.2006.01.024

Google Scholar

[10] P.I. Butyagin, Ye.V. Khokhryakov, A.I. Mamaev, Microplasma systems for creating coatings on aluminium alloys, Mater. Lett. 57 (2003) 1748-1751.

DOI: 10.1016/s0167-577x(02)01062-5

Google Scholar

[11] L.M. Tyrina, V.S. Rudnev, I.V. Lukiyanchuk, A.Yu. Ustinov, V.I. Sergienko, M.S. Vasil'eva, N.B. Kondrikov, Ni- and Cu-containing oxide layers on aluminum: formation, composition, and catalytic properties, Dokl. Phys. Chem. 415 (2007) 183-185.

DOI: 10.1134/s0012501607070056

Google Scholar

[12] A.B. Rogov, Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta(4-) complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions, Mater. Chem. Phys. 167 (2015) 136-144.

DOI: 10.1016/j.matchemphys.2015.10.020

Google Scholar

[13] A.B. Rogov, O.P. Terleeva, I.V. Mironov, A.I. Slonova, Microplasma synthesis of Fe-containing сoatings on aluminum in homogeneous electrolytes, Prot. Met. Phys. Chem. Surf. 48 (2012) 340-345.

DOI: 10.1134/s2070205112030148

Google Scholar

[14] H.F. Guo, M.Z. An, Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation, Thin Solid Films 500 (2006) 186-189.

DOI: 10.1016/j.tsf.2005.11.045

Google Scholar

[15] Y.Y. He, L. Chen, Z.C. Yan, Y.L. Zhang, Effects of CH3OH addition on plasma electrolytic oxidation of AZ31 magnesium alloys, Plasma Sci. Technol. 17 (2015) 761-766.

DOI: 10.1088/1009-0630/17/9/07

Google Scholar

[16] S.C. Yeh, D.S. Tsai, S.Y. Guan, C.C. Chou, Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation, Appl. Surf. Sci. 356 (2015) 135-141.

DOI: 10.1016/j.apsusc.2015.08.043

Google Scholar

[17] A. Lugovskoy, S. Lugovskoy, Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys, Mater. Sci. Eng. C-Mater. Biol. Appl. 43 (2014) 527-532.

DOI: 10.1016/j.msec.2014.07.030

Google Scholar

[18] Y.N. Jiang, B. Liu, Z.F. Zhai, X.Y. Liu, B. Yang, L.S. Liu, X. Jiang, A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method, Appl. Surf. Sci. 356 (2015) 273-281.

DOI: 10.1016/j.apsusc.2015.08.080

Google Scholar

[19] Y.N. Jiang, B.D. Liu, W.J. Yang, L. Yang, S.J. Li, X.Y. Liu, X.L. Zhang, R. Yang, X. Jiang, Crystalline (Ni1-xCox)5TiO7 nanostructures grown in situ on a flexible metal substrate used towards efficient CO oxidation, Nanoscale 9 (2017) 11713-11719.

DOI: 10.1039/c7nr02633a

Google Scholar

[20] N.V. Lebukhova, V.S. Rudnev, P.G. Chigrin, I.V. Lukiyanchuk, M.A. Pugachevsky, A.Yu. Ustinov, E.A. Kirichenko, T.P. Yarovaya, The nanostructural catalytic composition CuMoO4/TiO2+SiO2/Ti for combustion of diesel soot, Surf. Coat. Technol. 231 (2013) 144-148.

DOI: 10.1016/j.surfcoat.2012.05.065

Google Scholar

[21] Y.N. Jiang, B.D. Liu, W.J. Yang, B. Yang, X.Y. Liu, X.L. Zhang, M.A. Mohsin, X. Jiang, New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants, Crystengcomm. 18 (2016) 1832-1841.

DOI: 10.1039/c5ce02445e

Google Scholar

[22] M.S. Vasilyeva, V.S. Rudnev, A.P. Parkhomchuk, I.V. Lukiyanchuk, K.A. Sergeeva, A.A. Sergeev, Plasma electrolytic formation of WO3-CuO or WO3-CuWO4 oxide layers on titanium, Key Eng. Mater. 806 (2019) 51-56.

DOI: 10.4028/www.scientific.net/kem.806.51

Google Scholar

[23] C.M. Wu, S. Naseem, M.H. Chou, J.H. Wang, Y.Q. Jian, Recent advances in tungsten-oxide-based materials and their applications, Front. Mater. 6 (2019) 49.

DOI: 10.3389/fmats.2019.00049

Google Scholar

[24] I.V. Lukiyanchuk, V.S. Rudnev, Tungsten oxide films on aluminum and titanium, Inorg. Mater. 43 (2007) 264-267.

DOI: 10.1134/s0020168507030107

Google Scholar

[25] M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, R. Molaei, (WO3)x–(TiO2)1−x nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism, Mater. Chem. Phys. 128 (2011) 427-432.

DOI: 10.1016/j.matchemphys.2010.06.020

Google Scholar

[26] M.S. Vasilyeva, V.S. Rudnev, V.G. Kuryavyi, The effect of acetonitrile additives to tetraborate electrolyte on the composition and morphology of PEO layers on titanium, Prot. Met. Phys. Chem. Surf. 55 (2019) 473-480.

DOI: 10.1134/s2070205119030262

Google Scholar

[27] V.S. Rudnev, M.S. Vasilyeva, I.V. Lukiyanchuk, Thermally controlled formation of WO3 nano- and microcrystals on the surface of coatings produced on titanium by plasma electrolytic oxidation, Inorg. Mater. 55 (2019) 681-686.

DOI: 10.1134/s0020168519070148

Google Scholar

[28] K.N. Kilin, V.S. Rudnev, I.V. Lukiyanchuk, M.S. Vasilyeva, T.A. Kaidalova, Thermal transformation of the surface of Mn-, W-containing plasma electrolytic oxide coatings on titanium, Russ. J. Apl. Chem. 92 (2019) 1674-1679.

DOI: 10.1134/s1070427219120073

Google Scholar

[29] V.S. Rudnev, I.V. Lukiyanchuk, M.S. Vasilyeva, T.A. Kaidalova, Temperature-controlled growth of micro- and nanocrystals on the surface of NiO+CuO/TiO2/Ti composites, Vacuum 167 (2019) 397-406.

DOI: 10.1016/j.vacuum.2019.06.039

Google Scholar