[1]
Ch. Li, K.Ch.K. Soh, P. Wu, Formability of ABO3 perovskites, J. Alloys Compd. 372 (2004), 40.
Google Scholar
[2]
J. Hao, W. Li, J. Zhai, H. Chen, Progress in highstrain perovskite piezoelectric ceramics, Mater. Sci. Eng. R Rep. 135 (2019), 1.
Google Scholar
[3]
J. Shi, L. Guo, ABO3based photocatalysts for water splitting, Progress in Natural Science: Materials International. 22 (2012) 592.
Google Scholar
[4]
A. Chroneos, R.V. Vovk, I. Goulatis, L.I. Goulatis, Oxygen transport in perovskite and related oxides: A brief review, J. Alloys Compd. 494 (2010) 190.
DOI: 10.1016/j.jallcom.2010.01.071
Google Scholar
[5]
M. Pena, J.L.G. Fierro, Chemical structures and performances of perovskite oxides, Chem. Rev. 101 (2001) (1981).
Google Scholar
[6]
A.A. Barresi, D. Mazza, S. Ronchetti, R. Spinicci, M. Vallino, Nonstoichiometry and catalytic activity in ABO3 perovskites: LaMnO3 and LaFeO3, Studies in Surface Science and Catalysis 130 (2000) 1223.
DOI: 10.1016/s0167-2991(00)80366-3
Google Scholar
[7]
M.R. Pai, B.N. Wani, B. Sreedhar, S. Singh, M. Gupta, Catalytic and redox properties of nanosized La0.8Sr0.2Mn1–xFexO3–δ mixed oxides synthesized by different routes, J. Mol. Catal. A Chem. 246 (2006) 128.
DOI: 10.1016/j.molcata.2005.10.016
Google Scholar
[8]
G. Wang, J. Bai, C. Shan, D. Zhang, N. Lu, Q. Liu, Z. Zhou , S. Wang, C. Liu, Synthesis and ethanol gas sensing properties of mesoporous perovskitetype BaSnO3 nanoparticles interconnected network, Mater. Lett. 205 (2017) 169.
DOI: 10.1016/j.matlet.2017.06.049
Google Scholar
[9]
N. Yi, Y. Cao, Y. Su, W.L. Dai, H.Y. He, K.N. Fan, Nanocrystalline LaCoO3 perovskite particles confined in SBA15 silica as a new efficient catalyst for hydrocarbon oxidation, J. Catal. 230 (2005) 249.
DOI: 10.1016/j.jcat.2004.11.042
Google Scholar
[10]
Y. Da, L. Zeng, T. Wang, T. Mao, R. Chen, C. Gong, G. Fan, Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1−xPtxO3 perovskite oxides, Catal. Today. 327 (2019) 73.
DOI: 10.1016/j.cattod.2018.06.007
Google Scholar
[11]
Y. Farhang, E. TaheriNassaj, M. Rezaei, Pd doped LaSrCuO4 perovskite nanocatalysts synthesized by a novel solid state method for CO oxidation and Methane combustion, Ceramics International. 44 (2018) 21499.
DOI: 10.1016/j.ceramint.2018.08.211
Google Scholar
[12]
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[13]
W. Kohn, J.L. Sham, SelfConsistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[14]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, et al., QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009) 395502.
Google Scholar
[15]
J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchangecorrelation hole of a manyelectron system, Phys. Rev. B. 54 (1996) 16533.
DOI: 10.1103/physrevb.54.16533
Google Scholar
[16]
H.J. Monkhorst, J.D. Pack, Specials points for Brillouinzone integrations, Phys. Rev. B. 13 (1976) 5188.
Google Scholar
[17]
D. Vanderbilt, Soft selfconsistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[18]
A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95 (2014) 337.
DOI: 10.1016/j.commatsci.2014.07.043
Google Scholar
[19]
V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B. 44 (1991) 943.
DOI: 10.1103/physrevb.44.943
Google Scholar
[20]
D. du Boulay, E.N. Maslen, V.A. Streltsov, N. Ishizawa, A synchrotron Xray study of the electron density in YFeO3, Acta Cryst. B51 (1995) 921.
Google Scholar
[21]
H. Shen, J.Y. Xu, A.H. Wu, J.T. Zhao, M.L. Shi, Magnetic and thermal properties of perovskite YFeO3 single crystals, Mater. Sci. Eng. B. 157 (2009) 77.
DOI: 10.1016/j.mseb.2008.12.020
Google Scholar
[22]
M.A. Butler, D.S. Ginley, M. Eibschutz, Photoelectrolysis with YFeO3 electrodes, J. Appl. Phys. 48 (1977) 3070.
Google Scholar
[23]
D. Stoeffler, Z. Chaker, First principles study of the electronic structure and magnetic properties of YFeO3 oxide, J. Magn. Magn. Mat. 442 (2017) 255.
DOI: 10.1016/j.jmmm.2017.06.129
Google Scholar
[24]
T. Shen, C. Hu, W.L. Yang, H. C. Liu, X. L. Wei, Theoretical investigation of magnetic, electronic and optical properties of orthorhombic YFeO3: A firstprinciple study, Materials Science in Semiconductor Processing. 34 (2015) 114.
DOI: 10.1016/j.mssp.2015.02.015
Google Scholar
[25]
A. Emery, C. Wolverton, Highthroughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites, Sci Data. 4 (2017) 170153.
DOI: 10.1038/sdata.2017.153
Google Scholar
[26]
Shared Facility Center Data Center of FEB RAS, (Khabarovsk), http://lits.ccfebras.ru.
Google Scholar
[27]
Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru.
Google Scholar