Computer Simulation of Oxygen Vacancy Formation in YFeO3 Perovskite

Article Preview

Abstract:

The pseudopotential method and density functional theory with Hubbard correction were used to study changes in the atomic and electronic structure of yttrium orthoferrite (YFeO3) during vacancy formation. Depending on the value of non-stoichiometry in YFeO3−δ (δ = 0.0625 and 0.25), the energy gain of one of the two types of vacancy decreases from 0.3 to 0.1 eV. So it have been shown that high concentrations of oxygen vacancies make more insignificant the difference in the type of formed vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

355-360

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ch. Li, K.Ch.K. Soh, P. Wu, Formability of ABO3 perovskites, J. Alloys Compd. 372 (2004), 40.

Google Scholar

[2] J. Hao, W. Li, J. Zhai, H. Chen, Progress in highstrain perovskite piezoelectric ceramics, Mater. Sci. Eng. R Rep. 135 (2019), 1.

Google Scholar

[3] J. Shi, L. Guo, ABO3based photocatalysts for water splitting, Progress in Natural Science: Materials International. 22 (2012) 592.

Google Scholar

[4] A. Chroneos, R.V. Vovk, I. Goulatis, L.I. Goulatis, Oxygen transport in perovskite and related oxides: A brief review, J. Alloys Compd. 494 (2010) 190.

DOI: 10.1016/j.jallcom.2010.01.071

Google Scholar

[5] M. Pena, J.L.G. Fierro, Chemical structures and performances of perovskite oxides, Chem. Rev. 101 (2001) (1981).

Google Scholar

[6] A.A. Barresi, D. Mazza, S. Ronchetti, R. Spinicci, M. Vallino, Nonstoichiometry and catalytic activity in ABO3 perovskites: LaMnO3 and LaFeO3, Studies in Surface Science and Catalysis 130 (2000) 1223.

DOI: 10.1016/s0167-2991(00)80366-3

Google Scholar

[7] M.R. Pai, B.N. Wani, B. Sreedhar, S. Singh, M. Gupta, Catalytic and redox properties of nanosized La0.8Sr0.2Mn1–xFexO3–δ mixed oxides synthesized by different routes, J. Mol. Catal. A Chem. 246 (2006) 128.

DOI: 10.1016/j.molcata.2005.10.016

Google Scholar

[8] G. Wang, J. Bai, C. Shan, D. Zhang, N. Lu, Q. Liu, Z. Zhou , S. Wang, C. Liu, Synthesis and ethanol gas sensing properties of mesoporous perovskitetype BaSnO3 nanoparticles interconnected network, Mater. Lett. 205 (2017) 169.

DOI: 10.1016/j.matlet.2017.06.049

Google Scholar

[9] N. Yi, Y. Cao, Y. Su, W.L. Dai, H.Y. He, K.N. Fan, Nanocrystalline LaCoO3 perovskite particles confined in SBA15 silica as a new efficient catalyst for hydrocarbon oxidation, J. Catal. 230 (2005) 249.

DOI: 10.1016/j.jcat.2004.11.042

Google Scholar

[10] Y. Da, L. Zeng, T. Wang, T. Mao, R. Chen, C. Gong, G. Fan, Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1−xPtxO3 perovskite oxides, Catal. Today. 327 (2019) 73.

DOI: 10.1016/j.cattod.2018.06.007

Google Scholar

[11] Y. Farhang, E. TaheriNassaj, M. Rezaei, Pd doped LaSrCuO4 perovskite nanocatalysts synthesized by a novel solid state method for CO oxidation and Methane combustion, Ceramics International. 44 (2018) 21499.

DOI: 10.1016/j.ceramint.2018.08.211

Google Scholar

[12] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[13] W. Kohn, J.L. Sham, SelfConsistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, et al., QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009) 395502.

Google Scholar

[15] J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchangecorrelation hole of a manyelectron system, Phys. Rev. B. 54 (1996) 16533.

DOI: 10.1103/physrevb.54.16533

Google Scholar

[16] H.J. Monkhorst, J.D. Pack, Specials points for Brillouinzone integrations, Phys. Rev. B. 13 (1976) 5188.

Google Scholar

[17] D. Vanderbilt, Soft selfconsistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[18] A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95 (2014) 337.

DOI: 10.1016/j.commatsci.2014.07.043

Google Scholar

[19] V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B. 44 (1991) 943.

DOI: 10.1103/physrevb.44.943

Google Scholar

[20] D. du Boulay, E.N. Maslen, V.A. Streltsov, N. Ishizawa, A synchrotron Xray study of the electron density in YFeO3, Acta Cryst. B51 (1995) 921.

Google Scholar

[21] H. Shen, J.Y. Xu, A.H. Wu, J.T. Zhao, M.L. Shi, Magnetic and thermal properties of perovskite YFeO3 single crystals, Mater. Sci. Eng. B. 157 (2009) 77.

DOI: 10.1016/j.mseb.2008.12.020

Google Scholar

[22] M.A. Butler, D.S. Ginley, M. Eibschutz, Photoelectrolysis with YFeO3 electrodes, J. Appl. Phys. 48 (1977) 3070.

Google Scholar

[23] D. Stoeffler, Z. Chaker, First principles study of the electronic structure and magnetic properties of YFeO3 oxide, J. Magn. Magn. Mat. 442 (2017) 255.

DOI: 10.1016/j.jmmm.2017.06.129

Google Scholar

[24] T. Shen, C. Hu, W.L. Yang, H. C. Liu, X. L. Wei, Theoretical investigation of magnetic, electronic and optical properties of orthorhombic YFeO3: A firstprinciple study, Materials Science in Semiconductor Processing. 34 (2015) 114.

DOI: 10.1016/j.mssp.2015.02.015

Google Scholar

[25] A. Emery, C. Wolverton, Highthroughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites, Sci Data. 4 (2017) 170153.

DOI: 10.1038/sdata.2017.153

Google Scholar

[26] Shared Facility Center Data Center of FEB RAS, (Khabarovsk), http://lits.ccfebras.ru.

Google Scholar

[27] Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru.

Google Scholar